TinyProf: Towards Continuous Performance
Introspection through Scalable Parallel 1/0O

Ke Fan*}, Suraj Kesavan', Steve Petruzza®, Sidharth Kumar*$
* University of Illinois at Chicago, Chicago, IL, USA
t University of California at Davis, Davis, CA, USA
1 Utah State University, Logan, UT, USA
§ Email: {kfan23, sidharth} @uic.edu

Abstract—Performance profiling tools are crucial for HPC
specialists to identify performance bottlenecks in parallel codes
at various levels of granularity (i.e., across nodes, ranks, and
threads). Although numerous sophisticated profiling tools have
been developed, achieving scalable performance introspection on
large scales remains a challenge. This is particularly evident in ef-
ficiently writing profiles to disk during runtime and subsequently
reading them with constrained computing resources for post-
hoc analysis. In this paper, we present TinyProf, a performance
introspection framework that tackles 1/O-related challenges in
profiling performance data at scale. TinyProf’s scalability is
attributed to an optimal runtime that consists of three key
components: (1) an efficient in-memory data structure that
minimizes memory consumption and decreases communication
overhead during parallel file I/O; (2) a customizable three-
phase I/0 scheme that generates optimal I/O patterns capable
of scaling with high core counts; and (3) a streamlined data
format for profiles, which guarantees minimal sizes for profile
files. These three techniques instill scalability into the profiler,
making it low overhead, even at high process counts (less than
5%). This low overhead makes it possible for the profiler to be
run with an application as a default (whenever the application
is running)—enabling continuous introspection of performance.
We demonstrate the efficiency of our framework using large-scale
parallel applications and perform a thorough evaluation against
existing systems up to 32k processes.

I. INTRODUCTION

Rapid advancements in computing technologies, especially
the arrival of exascale machines, are pushing the frontiers
of computational sciences in terms of both the scale and
complexity of problems that can be studied [1]. However,
the increasing possibilities also necessitate optimal use of
computational resources to achieve faster time-to-solution, a
lower (monetary) cost of computing, and a lower carbon foot-
print. Performance profiling tools are critical to achieving these
goals. Broadly, profiling entails measuring key metrics for the
performance of parallel programs and their specific portions
(e.g., lines of code, loops, and functions), while preserving
the semantic context. Commonly employed metrics measure
execution runtime, data movement, cache misses, and other
associated costs. This typically follows the use of performance
visualization tools, enabling a post-hoc analysis [2], [3] of the
generated profiles.

Although performance profiling aims to improve the overall
performance of applications, significant advantages can be
reaped through continuous introspection, i.e., always running

the parallel code with the profiling capabilities turned on.
Continuous introspection can be key to understanding and
eventually explaining one of the bigger challenges in HPC —
performance variability [4], [5], [6], i.e., the phenomenon of
the same code exhibiting different performance during various
runs, potentially due to the presence of a straggler process or
resource contention, such as the network or the I/O system. In
this paper, we strive towards continuous introspection through
our scalable performance profiling system.

State-of-the-art performance analysis frameworks [7], [8],
[9] face challenges in keeping pace with the escalating scale
of modern applications. These challenges fall into two broad
categories: (1) I/O overhead and scalability challenges of
writing profiles in parallel; and (2) I/O overhead while reading
those profiles using web-based or standalone visualization sys-
tems. Several profiling tools [10], [11], [9] exist for capturing
performance-related metrics from parallel applications. Al-
though these tools are flexible and mostly easy to integrate into
applications, existing solutions strive to reduce the runtime
overhead of the profiler (e.g., annotation overhead), largely
ignoring the file I/O overhead and the size of the profiles.
However, the I/O of profiling reports can be expensive for
large-scale parallel applications with hundreds or thousands
of processes (see Figure 7). State-of-the-art profiling systems
like Caliper [10] and HPCToolkit [12] either support single-
file I/O or file-per-process I/O or both, which are known to
have limitations at higher scales [13], [14]. The analysis and
visualization systems for such profiles may incur significant
I/O overhead, particularly for profiles collected at high scales.
This is primarily because these systems typically operate
in memory-constrained environments, such as web browsers,
which can further contribute to the overall performance cost.
Most existing profiling frameworks do not account for this
overhead, often producing profile data formats with many
redundancies and a high footprint.

To meet the scalability needs of performance profiling
systems, we developed TinyProf, a lightweight and scalable
parallel profiling system. TinyProf is designed to collect
performance metrics effectively from all running processes
with minimal overhead. It is an instrumentation-based profiling
system that facilitates annotating the HPC code, e.g., loops and
code snippets, and logging the associated application-specific
metadata. The profiles generated by TinyProf contain compre-

hensive information required to perform essential performance
analysis tasks. The included data encompasses call sequences
of the profiled code, enabling users to gain insights into the
program’s structure. The profiles also provide detailed data for
each process, allowing for an in-depth examination of process-
specific behavior. TinyProf produces output files that can
be easily converted to formats compatible with widely-used
analysis and visualization tools, such as CallFlow [3], [15]
and Hatchet [16], [17], through the use of a straightforward
conversion script.

TinyProf addresses data movement challenges at scale
with three technical components: (i) an efficient in-memory
data structure (Section IV), (ii) a customizable three-phase
I/O strategy (Section V), (iii) and a compact data format
(Section VI). The in-memory data structure consolidates all
profiled code regions, referred to as events, along with their
associated metrics. This aggregation process minimizes re-
dundancies within each individual process, ensuring efficient
processing of the profiling data. The three-phase I/O approach
consists of three phases: the events synchronization phase, the
data aggregation phase, and the file I/O phase. These three
phases work together to generate amenable I/O access patterns
that can scale to high core counts. The compact file format
minimizes profile sizes, reducing the burden on I/O for both
parallel profiling and downstream performance analysis and
visualization applications. Our contributions can be listed as
follows:

o Designed a data structure that enhances TinyProf’s scal-
ability by reducing communication overhead during the
data aggregation stage, a component of the three-phase I/O
approach.

« Developed a tailored three-phase I/O system that efficiently
scales parallel file I/O for performance data to high core
counts. (100x faster than Caliper at 32k processes).

o Designed a lightweight data format for the generated logs
that minimizes metadata, leading to a smaller storage foot-
print and faster load times. (on average 3x lightweight than
Caliper).

o performed a comprehensive evaluation of TinyProf using
real-world applications [14], [18] on the Theta supercom-
puter at Argonne National Laboratory. The results demon-
strated the feasibility of continuous introspection, with an
overhead of less than 5% when running the application on
32k processes.

TinyProf has overhead similar to in-situ analysis tasks,
which are heavily adopted in production. Therefore, we want
to position TinyProf as a low-overhead, in-situ-profiling tool
that can potentially be run with any parallel application by
default without compromising performance, thus facilitating
continuous introspection for performance analysis. Addition-
ally, our work is open-source, and the methodologies detailed
in the paper are versatile and could be applied to other tools
(such as Caliper) to improve their runtime performance.

Profilers P-strategy | Scale (Processes)
HPCToolkit [12] S 10k
Open|SpeedShop [19] S 256
Score-P [11] 1 10k
TAU [20] 1 16k
Timemory [9] 1 -
INAM [21] 1 4k
Caliper [10] 1 256

TABLE I: Summary of a subset of existing popular profiling
(P) tools. P-strategy denotes the profiling strategy of tools,
including statistical sampling (S) and instrumentation (I). Scal-
ability represents the largest number of processes or threads
reported in the corresponding paper.

II. RELATED WORK

This section comprehensively reviews the state-of-the-art
profiling tools and systems commonly employed in high-
performance computing (HPC) environments. We begin by
summarizing a subset of existing popular profiling tools in Ta-
ble I, also showing the total number of processes/threads
reported in each of their foundational papers.

Profiling tools classification: Profiling tools collect fine-
grained execution profiles and generate calling contexts to
help facilitate several performance analysis tasks, such as
load balancing analysis detection [22], roofline analysis [23]
or variability analysis [3], [24]. Numerous profiling tools
have been developed for performance profiling of parallel
applications [12], [10], [9], [25], [26]. Broadly, profiling tools
can be classified into two categories: (1) statistical sampling,
where system-generated interrupts are triggered using either
time-based or event-based sampling, and (2) instrumentation,
where measurement probes are placed directly either in the
source code or by modifying the generated binary program.
HPCToolkit [12] and Open|SpeedShop [19] use statistical
sampling to collect measurement data through interval timers,
hardware counters, and overflow interrupts. Choosing an ap-
propriate sampling interval is challenging since a low sampling
rate can miss critical information, while high sampling can
generate large profiles. This can further degrade the perfor-
mance analysis experience as users must profile once again to
improve the data quality. In contrast, instrumentation profilers
like Score-P [11], TAU [20], Timemory [9], INAM [21]
and Caliper [10] are flexible, customizable, and incur fewer
logging overheads. They employ source-code annotation and
adopt several compiler mechanisms to record the performance
data across several domains (e.g., hardware, application, com-
munication). The annotation functionality allows users to
adjust the granularity at which profiles are generated (e.g.,
module, class, function, or a specific line in code). However,
the usability of these profilers is affected by the steep learning
curve needed to tweak the performance collection process
to perfection. This incurs considerable development time and
training costs. Caliper, for example, is a cross-stack, general-
purpose introspection framework that provides users with mul-
tiple data-collection strategies based on a user-provided policy
at runtime. It is quite powerful and can be used to collect the

(2 Runtime-system P O
N ° @m = —— uo
POI:l R . callpath-1:| event-1 S S)
P2|:| Ca”: ‘§ call-pdths b callpath—n: ,g » E isual | = 7~
S event-map o E :
S = e s <
P3 S =_ s Web-based
.. < QQQ set every n dump N~ Vi lizati k
Appltcatw set | seconds — _ sualization
T ontexts 11 set aggregator count 1

Fig. 1: The workflow of TinyProf. An application begins by setting one-time, global application-specific contexts ((3)). Then
the annotation API (2)) invokes a series of profiled code regions (events). The runtime is responsible for generating the
unique key called as callpath of every event (4)) which then gets stored in an event-map (). TinyProf provides the ability
to snapshot (©) the entire state of performance metric every n seconds, an important fault tolerant measure. To reduce the
file I/O overhead, we have developed a three-phase I/O technique (7)) to dump performance metrics in a customized compact
file format ((®)). The profiles can then be read by most existing visualization tools ((9)).

entire software stack, all the way to the operating system.
Caliper also offers built-in measurement configurations to
make it easier to use, such as loop-report. However, these
configurations report the basic profiles independently, such
as time-series information for loops or a region time profile
across all processes. To merge these two profiles into a single
file, as our profiler does, it is necessary to create a custom
configuration file.

I/O overhead of profilers: At large scales, file I/O plays a cru-
cial role in the performance of profiling tools, as demonstrated
in Figure 7, where it constitutes most of the runtime. However,
most existing profiling frameworks lack an optimized file I/O
system. They typically employ file-per-process 1/O, single-file
I/O, shared-file I/O, or their combination (e.g., Caliper [10]
uses both file-per-process I/O and single-file I/O). In file-per-
process 1/0, each process writes to a separate file. Single-file
I/O involves one process collecting data from all others and
writing a single file. Shared-file I/O permits all processes to
access and write to a single shared file. However, it is well
known that none of these I/O strategies scale effectively at
high scales [14]. Our work presents a customized three-phase
I/O scheme to reduce the overhead of parallel file 1/O.

I/O overhead of post-hoc analysis: File 1/0 overhead can
also be a significant penalty for performance analysis and
visualization systems, especially when dealing with profiles
of large-scale runs. The I/O challenge is exacerbated for
visualization systems that run entirely in resource-constrained
environments, such as web browsers. The generated profiles
typically contain performance data across all processes, and
the data for each process must include specific program entities
with many operation iterations (e.g., repeated executions and
loops), resulting in numerous amounts of data at high scales.
Analyzing individual process behavior and performance vari-
ability for various program entities is essential and required
by performance visualization systems (e.g., Callflow [15]). In
fact, the collected data includes massive local (within each

process) and global (across processes) redundancies. How-
ever, although existing profiling tools have devised various
data formats for profiles, they tackle only a limited number
of redundancies. For example, Hatchet [16] utilizes unique
integers to encode event names to reduce the size of logs. This
paper introduces a compact data format that systematically
eliminates all redundancies in profiles to minimize their size.

III. CHALLENGES WITH PROFILING AT HIGH SCALES

A robust performance analysis framework consists of two
essential components: first, a profiling mechanism that collects
performance metrics from large-scale applications, and second,
an analysis and visualization toolkit that enables users to
investigate and gain insights from the gathered data. Both
components present unique I/O requirements. Profilers gather
performance metrics simultaneously while parallel HPC ap-
plications are running, which requires an efficient parallel
output mechanism across nodes to store the collected data. In
contrast, visualization is an interactive process performed on
individual workstations or through web browsers, necessitating
selective and on-demand retrieval of the relevant data. Two
major challenges arise when scaling performance analysis
frameworks. Firstly, profilers must minimize the I/O overhead
incurred while writing profile data, considering the resource
contention with the target application (Section III-A). Sec-
ondly, visualization tools must provide quick and responsive
access to the collected data to enable meaningful post-hoc
analysis and insights (Section III-B).

A. Parallel file I/O challenge at scale

Instrumentation-based profilers, including ours, collect per-
formance data and application-related metadata; unlike other
applications, they do not have to deal with huge volumes of
data. However, the performance of parallel I/O depends not
only on the total data size under consideration but also on
a range of other factors, such as file access pattern, burst
size, number of concurrent file accesses, file size, and count.
A successful parallel I/O strategy must be both flexible and

tunable, striking a balance across all these parameters to
effectively scale to high core counts. Unfortunately, existing
frameworks like Caliper and HPCToolKit lack this adaptability
and do not scale gracefully to high core counts (see Table II).
A low-overhead parallel file I/O strategy becomes even more
essential for profiling tools aspiring to offer continuous in-
trospection, as they generate performance profiles at regular
intervals throughout application execution.

Popular /O strategies that are used in existing profiling sys-
tems include file-per-process 1I/O, single-file I/O, and shared-
file /O (detailed in Section II, I/O overhead of profilers).
However, these strategies are known to suffer from perfor-
mance issues at scale. Additionally, shared-file I/O, built on
top of MPI collective I/O, is primarily used for dealing with
large volumes of data in binary format. This I/O method is
not suited for our needs as the collected metadata by our
system is typically composed of different data types (making
conversion to binary or raw format cumbersome), and profiles
are preferred to be written in a certain format (e.g., JSON)
that can be analyzed directly.

In the parallel I/O community, subfiling [27] and data
aggregation [28] are two known techniques that mitigate
the challenges associated with file-per-process and single-file
I/0. With subfiling, the number of files outputted becomes
a tunable parameter between 1 and P (process count). With
data aggregation, only a selected set of processes (known as
aggregators) perform all the necessary I/O operations. This
happens in two phases, where all processes transmit their data
to chosen aggregators, which then perform all necessary 1/O.
This process also guarantees optimal I/O burst size.

We aim to develop a parallel I/O system for profiling data,
incorporating sub-filing and data aggregation techniques. To
implement an effective two-phase I/O technique, we must
reduce both the communication overhead associated with
aggregating data from processes to aggregators and the file
I/O overhead associated with writing data to disk. Reduc-
ing the communication overhead necessitates an efficient in-
memory data structure (see Section IV) that can minimize the
exchanging of local data within each process. In addition,
HPC applications run at large scales, where processes or
threads typically execute a similar set of tasks with just a few
exceptions. This leads to a significant amount of redundant
performance data being collected across processes and threads,
referred to as global redundancies. To address this, we incor-
porate an event synchronization phase with a two-phase I/O
scheme, resulting in a three-phase I/O scheme (see Section V).
This phase synchronizes the event (profiled code region) list
along with their calling sequences across all processes to
eliminate global redundancies. It minimizes the profile size,
consequently reducing the file I/O overhead of writing data.

B. Storage footprint of profile

To expedite data access when performing post-hoc anal-
ysis, minimizing the size of the output profiles is essential.
This can be done by adopting a compact data format that
eliminates redundancies (both local and global) from the

Listing 1: TinyProf minimal API listing

TinyProf :: Profiler (string filename , double
io_frequency , string selfkeys);
TinyProf :: Event(string event_name);
TinyProf :: Event(string event_name,
TinyProf :: Event(string event_name,
int loop);
TinyProf :: Event(string event_name,
int loop, string selfvalues);
TinyProf :: " Event() ;
TinyProf :: flush () ;

int is_common);
int is_common,

int is_common,

profiles. All existing profiling tools must, at least, capture
the names and runtimes of profiled events while also keeping
track of their calling sequences. Consequently, each entry
in the output file should contain an event’s name, parent,
and runtime. Furthermore, a profiler must be able to tackle
different program entities, including (1) repeated executions
and (2) loops. To accurately assess the performance of parallel
applications, HPC developers typically run programs multiple
times to remove ambient effects like OS noise and network
instability. Additionally, many HPC applications rely heavily
on loops and have temporal behavior where certain functions
get executed repeatedly. These two entities generate numerous
profiling entries for a certain event with the same name and
other possible measured metadata, resulting in many local
redundancies.

Current compact formats address specific instances of re-
dundancy by assigning unique IDs to event names and repeat-
edly using these encoded IDs instead of the full event names.
They often create distinct entries for repeated executions,
loops, and processes/threads, each featuring a unique execution
ID, loop iteration, and rank/thread ID (see Figure 3(a)). Thus,
this leads to an undesirably inflated output file size. To address
this, we present an efficient in-memory data structure (Sec-
tion IV), which is instrumental in reducing local redundancies
within each process/thread. We then propose the customizable
three-phase I/O scheme (Section V), eliminating global redun-
dancies across processes/threads. These two techniques pave
the way for the compact data format (Section VI), yielding
minimal file sizes for profiles, low storage overhead, and fast
data access in post-hoc analysis.

IV. EFFICIENT IN-MEMORY DATA STRUCTURE

In this section, we delineate an efficient in-memory data
structure, termed the event map, to efficiently organize local
data within each process. This structure eliminates local re-
dundancies and minimizes the communication overhead for
the customizable three-phase I/O scheme. To demonstrate the
event map clearly, it is necessary first to describe the process
of generating measured performance data through our simple
source-code annotation API (Section IV-A). Following that,
we elaborate on the design of the event map, which serves
as an effective in-memory storage for the collected metrics
(Section IV-B).

0 // example code
void compute() {
for (inti=0;i<3;i++) {
M is a variable for memory cost
Event e (“compute”, 1, i, “COMP;M”);
// do some computation

}
if (rank % 2==1){
Event e (“update”, 0, “COMP;M”);

10 }

1 3}

12 void exchange() {

13 Event e (“exchange”);

14 for (inti=0;i<3;i++) {
15 { Event e (“comm”, 2, i);
16 MPI_Sendrecv(); }

18 { Event e (“write”, 2,i,“IO;M”);
19 MPI_File_write_at();

20 }

21 }

}
24 void main() {
25 TinyProf::Profiler(“out”, 5, “tag:0;mem:1”);
26 for (inti=0;i<2;i++){

27 Event e(“main”);

28 compute(); exchange();
29

30}

31 TinyProf::flush();

32}

Fig. 2: Example of MPI code using our annotation API.

A. Profiling performance data using annotation API

TinyProf’s annotation API can be seen in Listing 1. One of
the main components of the API (Figure 1Q2)) is a C++ Event
class. It is instantiated for any profiling code region enclosed
within a pair of curly braces and designated as an event. We
leverage the Resource Acquisition Initialization (RAII) feature
of C++ to guarantee that code regions within any local scope
invoke the constructor and destructor of the Event class when
entering and departing the scope, respectively. To be easy to
use, an instant of the Event class only requires a name of
an event in most cases (see first constructor in Event class in
Listing 1). To accommodate different program entities, such
as executions and loops, the Event class incorporates two
key features. Firstly, it automatically detects each execution by
monitoring the invocation of the first event, typically the main
function. Secondly, it offers an optimized argument 1oop for
loop events, providing two distinct measurement modes to
cater to various requirements: (1) measuring the runtime for
each individual iteration, and (2) calculating the cumulative
runtime across all iterations (see the third constructor for
Event class in Listing 1). In addition, to minimize the
communication overhead in the synchronization phase (see
Section V-A), the Event class includes an optional argument
is_common, which specifies whether the event is invoked
by all processes (1) or not (0) (see the second constructor for
Event class in Listing 1).

The runtime system manages the details for every event

class instance, storing its callpath and its runtime. The callpath
of an event comprises all the preceding events, originating
from the root event (e.g., main), which is automatically gen-
erated by our API (Figure 1®). As an illustration, consider
the event comm depicted in Figure 2 (line 15); its callpath is
main<exchange<comm.

The Profiler class is another crucial component of the
runtime system, tasked with handling the data gathered in the
backend in an efficient manner. It is instantiated as a singleton
class and invoked by applications once at the beginning to
establish application-specific contexts, including the profile
name, I/O frequency dumps, and an optional user-defined list
of measured metrics (Figure 1(3)). The profile name determines
the filename for the dumping profiles, the I/O frequency sets
the intervals at which intermediate checkpoints are saved, and
the user-defined list may include any metrics specific to the
measured application.

Customizing profiling performance metrics: Since different
HPC applications may require the profiling of unique per-
formance metrics, our annotation API allows users to tailor
measurements for collecting application-specific data. These
metrics should be defined when setting up the application-
specific context (TinyProf::Profiler(..., string selfkeys)) in the
format name:is_consistent. name is the name of the perfor-
mance metric, which can be any arbitrary string. is_consistent
indicates whether this metric maintains a constant value for an
event, regardless of the processes or distinct program entities
(e.g., different iterations in a for loop) involved. For example,
the callpath of an event is a consistent metric, while its runtime
is an inconsistent metric.

Example: In Figure 2, the illustrative MPI code begins by
initializing the Profiler class and configuring the application-
specific context (line 25). This setup includes specifying the
output profile names, establishing intermediate checkpoints ev-
ery 5 seconds, and selecting two specific performance metrics
for customization. The fag metric is used to aggregate events
that share the same high-level semantic meaning across differ-
ent code snippets (e.g., compute-only, network-comm, and file-
I/0). Tts value is consistent (0) across different processes and
program entities. On the other hand, the mem metric represents
the memory usage for each event, but its user-specified value
(M) can vary with different executions, loop iterations, and
processes, making it inconsistent (1). The Event class is then
instantiated multiple times for various profiled code regions
(events), highlighted in green. The only necessary argument
for these instances is the event’s name (see line 27). Two
modes for loop events are distinguished by 1 and 2 modes
(line 4 vs. 15). Also, the inclusion of values for fag and mem
is optional for events (line 15 vs. 18). An example of an event
that is not common across all processes is shown in line §,
where the is_common argument is set to 0. Ultimately, the
program executes the £lush () function to transfer all the
measured data into the profiles for analysis.

Additionally, because the annotations are independent of
one another, they can be incrementally added anywhere in the
software stack. Having the freedom to annotate the code man-

rank, call_path, runtime, tag, mem

0, main<exchange<comm, 1.23, ¢’, 0
0, main<exchange<comm, 1.11, ’, 0
0, main<exchange<comm, 0.99, ¢’, 0
0, main<exchange<comm, 1.08, ’, 0
0, main<exchange<comm, 1.26, ’, 0
0, main<exchange<comm, 1.05, ¢*, 0
1, main<exchange<comm, 1.18, ’, 0
1, main<exchange<comm, 0.97, ¢’, 0
1, main<exchange<comm, 1.34, ’, 0
1, main<exchange<comm, 1.21, ’, 0
1, main<exchange<comm, 1.22, ¢’, 0
1, main<exchange<comm, 1.17, ’, 0

0, main, 9.34,¢,0
0, main, 9.17,¢,0
1, main, 8.67,¢’,0
1, main, 9.03,“’,0

0, main<compute, 2.78, COMP, 1561
0, main<compute, 1.92, COMP, 1332
0, main<compute, 2.48, COMP, 1412
0, main<compute, 2.82, COMP, 1281
0, main<compute, 1.66, COMP, 1312
0, main<compute, 1.73, COMP, 1423
1, main<compute, 2.54, COMP, 1628
1, main<compute, 2.13, COMP, 1219
1, main<compute, 1.88, COMP, 1364

0, main<exchange<write, 0.51, 10, 12762

“main”: 1, compute: 2, update: 3, exchange: 4, comm: 5, write: 6

call_path, is_loop, runtime, tag, mem

|1,o,934 0.1718.67-9.03,,0-010-0

1<2,1,2.78 + 1.92 + 248 - 2.82 + 1.66 + 2.73 | 2.54 + 2.13 + 1.88 - 2.67 + 1.52 + 2.93, COMP,
1561 + 1332 + 1412 - 1281 + 1312 + 1423 1 1628 + 1219 + 1364 - 1294 + 1341 + 1193

0, main<exchange<write, 0.34, 10, 11368
0, main<exchange<write, 0.45, 10, 12192
0, main<exchange<write, 0.49,10, 10281
0, main<exchange<write, 0.47, 10, 11298
0, main<exchange<write, 0.32, 10, 13647
1, main<exchange<write, 0.35, 10, 12846
1, main<exchange<write, 0.53, 10, 12744
1, main<exchange<write, 0.49, 10, 11842
1, main<exchange<write, 0.38, 10, 12846
1, main<exchange<write, 0.42, 10, 11038
1, main<exchange<write, 0.46, 10, 10187

1, main<compute, 2.67, COMP, 1294
1, main<compute, 1.52, COMP, 1341
1, main<compute, 1.93, COMP, 1193

1, main<update, 1.35, COMP, 637
1, main<update, 1.28, COMP, 872

0, main<exchange, 5.19, ’, 0
0, main<exchange, 4.95, ’, 0
1, main<exchange, 4.99, ¢’, 0
1, main<exchange, 523, ¢, 0

(a)

13,0,0 - 01135 - 1.28, COMP, 0 - 0 | 637 - 872

14,0,5.19 - 4.9514.99 - 5.23,,0-010-0

|1 4<5,2,3.33-3.391349-3.60,,0-010-0

1<4<6,2,1.30 - 1.28 11.37 - 1.26,10, 36322 - 35226 | 37432 - 34071

(b)

Fig. 3: (a) A profile that aligns with the example code in Figure 2, presented in the standard CSV format; (b) a corresponding
profile in our more condensed format. The colored boxes in section (c) are created by merging the similarly colored boxes

from section (b).

ually offers additional flexibility, as application developers can
decide to annotate and, hence, profile only the performance-
critical source-code regions or use coarser granularity for less
important events to reduce the annotation overhead.

B. Event-map

As we have seen, an event represents the most granular
level of performance measurement. Consequently, the final
performance data consists of all recorded events. For most
HPC applications, the code annotation API is bound to create
large performance data, consisting of several thousands of
events. It is therefore essential to have an efficient in-memory
data structure to store the details of an event, its callpath, and
its measurement metrics. We implement this internally using
an ordered hash map called the event-map with a key-value
format (Figure 1(%5)). The key of the event-map is the callpath,
and the corresponding value is a list of attribute-class objects.
For example, the callpath for the event comm in Figure 2 (line
15) will be main<exchange<comm. Callpaths of all events
combined are used in constructing the calling context tree
(CCT) when the profiles are loaded for performance analysis,
revealing the clear code structure of the program. The attribute
class stores all relevant data for an event, including its runtime
and other self-defined metadata.

Executions involve repeating the entire codebase, while
loops iterate over specific functions; both lead to multiple
events sharing the same callpath. Our event-map data structure
leverages this characteristic to eliminate data redundancies.
Instead of creating a new key-value pair for each event with
an identical callpath, we append the event to the existing
list of attributes associated with that callpath (see Figure 4).
This approach eliminates the need to store repeated callpaths
in memory. Furthermore, we also eliminate redundancies in
the corresponding list of attribute-class objects, which is the

Keys in event map

new: v5, v2, v3, v6

callpath-1
P Yes, R i merge
callpath-2 merge | Matching: [v1], v2, v3, [v4]
attributes

‘ get
[vI V5], v2, v3, [v4,v6]

heck
callpath-k F—

Input:
New event

callpath-n

add to eygnt map

Fig. 4: Removing local redundancies using event map within
each process. For a new profiled event, TinyProf initially
verifies whether its callpath exists in the current event map. If
so, TinyProf consolidates its attribute list with the existing one
in the event map. Note that, TinyProf merges the inconsistent
attributes, e.g., v5 and v6, highlighted in green. Otherwise, the
new event is appended to the event map.

matching value of the callpath in the event-map. As shown
in Figure 4, we only concatenate the values of inconsistent
attributes highlighted as green. For example, the lines in
Figure 3(b) highlighted with green boxes only concatenate
attributes runtime and mem for event main.

V. CUSTOM THREE-PHASE I/O SCHEME

One of our main contributions is developing a scalable,
low-overhead, three-phase file I/O scheme that can facilitate
the profiling of parallel applications at high scales. The
three phases correspond to (see Figure 5): (1) the events
synchronization phase (Section V-A); (2) data aggregation
(Section V-B); and (3) file I/O (Section V-B).

A. Efficient events synchronization (phase 1)

Processes or threads in HPC applications may concurrently
perform different tasks, leading to different lists of profiled

Sync Events

I

\ P
—
/l:ldu—mp-lm

gather message

05
05
2N
0

‘common event:

——1

Ocomm(m event

| &

Phase 1: Event synchronization

gather message
Onan-common event

Phase 2: Data Aggregation Phase 3: File I/O

Fig. 5: The three-phase I/O strategy comprises (1) event
synchronization, (2) data aggregation, and (3) file input/output.
During the event synchronization phase, only the unique
events, which are indicated in red circles (D), @), and @),
are collected. In the data aggregation phase, two aggregators
(PO and P3) are chosen to gather data from other processes.
Finally, these aggregators are responsible for writing the
collected data to profiles.

events and their associated calling sequences. For example, in
Figure 5, each of the four processes maintains a unique event
list and the corresponding calling sequences. The common
events that are executed by all processes are colored blue,
while the non-common events that are called by only a subset
of processes are colored red. To eliminate global redundancies
across processes, reducing I/O overhead and log size, we ex-
ecute an event synchronization phase to maintain a consistent
view of all events and their calling sequences (see phase 1 in
Figure 5).

The implementation of this synchronization involves three
stages: (1) callpaths synchronization across processes; (2)
event names encoding within each process; and (3) rear-
ranging local data within each process. The initial stage is
synchronizing the callpaths of events (keys of the event map)
using MPI_Allgather. All processes are then guaranteed
to possess a consistent view of the events list associated
with calling sequences by merging all non-common events
from other processes. Only the non-common events from
all processes are gathered to minimize the communication
overhead. Recall, from subsection IV-A, common events are
guaranteed to be present on every process, and would therefore
already be part of the event map. Every process scans through
these non-common events to add them to the local event-map if
it already does not exist. The relevant attributes of these events
are labeled as null, indicating that they do not represent actual
process events.

With this consistent events list, the second stage encodes the
event names (strings) into unique integral indices, facilitating
the encoding of callpaths of events. This further reduces
memory and file storage overheads. The third phase eventually
rearranges the local data within each process according to

the consistent events list by padding the relevant attributes of
non-common events with 0, indicating that they do not have
these events. As an illustration, the event update in Figure 2
(line 8) is exclusively invoked by rank 1. Its corresponding
output is highlighted in orange in Figure 3(b), with data
padded for rank 0. The purpose of this padding is to transform
the non-uniform problem (MPI_Gatherv), which involves
varying message sizes in the following aggregation phase, into
a uniform problem (MPI_Gather) with consistent message
sizes. While the uniform approach may exchange slightly more
data with others, its communication overhead is lower than that
of the non-uniform approach.

B. Data aggregation and file I/0O (phases 2 and 3)

Following event synchronization, a data aggregation phase
is performed (see phase 2 in Figure 5) to collect data from
processes for selected aggregators. This follows a file I/O
phase in which each aggregator writes to an independent
profile file (see phase 3 in Figure 5).

Data aggregation evenly partitions processes based on the
predefined number of aggregators, with the first process in
each group designated as the aggregator. To reduce the com-
munication overhead, we concatenate values of inconsistent
attribute for all events into a string-typed message, necessitat-
ing only a single communication. Moreover, the event synchro-
nization phase (Section V-A) ensures that all processes share
the consistent view (order) of the events list; therefore, there is
no explicit need to transmit the keys of event map during the
communication phase. Finally, we use MPI_Gather to gather
the messages from processes since we converted the non-
uniform problem into a uniform problem in Section V-A. We
do this based on the observation that the degree of imbalance
in these messages is often low due to a small number of non-
common events. Also, non-uniform communication requires an
extra communication phase to gather the necessary metadata,
which adds an extra cost.

Finally, each aggregator writes all its data to an independent
file using just one write operation, ensuring a large I/O burst
size (see phase 3 in Figure 5). Therefore, the number of output
profiles equals the number of aggregators.

VI. COMPACT DATA FORMAT OF PROFILES

As demonstrated in Section III-B, there are several local
and global redundancies in the collected data. We then present
an efficient data structure (Section IV) and a three-phase 1/O
scheme (Section V) to remove local and global redundancies,
respectively. In this section, we describe the process of trans-
lating them into our compact file format to minimize the size
of the output profiles.

Existing profiling methods have created a variety of data
formats for profiles in JSON and CSV. Meanwhile, CSV is
a more compact format than JSON since it uses a headline
for all entries instead of repetitive attributes in every entry.
Thus, in this section, we compare our compact data format
(see Figure 3(b)) with the standard CSV format (see Fig-
ure 3(a)). The standard CSV format (see Figure 3(a)) stores

A P T A-cost | N-cost I-cost O (%)
FFT-20 4096 | TinyProf | 57.70 0.0031 0.056 0.102
FFT-20 4096 Caliper 57.40 0.0058 30.89 53.82

FFT-3000 512 TinyProf | 272.61 0.529 0.086 0.226
TC 1024 | TinyProf | 161.36 0.123 0.120 0.150
TC 1024 Caliper 163.08 0.414 1401.19 | 1718.55

TC (ET) | 4096 | TinyProf | 246.45 1.250 2.382 1.474

TABLE II: Profiling with applications. A: application, P:
process count, T: profiling tool, N: annotation, I: I/O, O:
overhead. All costs are presented in seconds (s). The overhead
(O) is calculated by ((N-cost + I-cost) / A-cost x 100).

performance data across executions, loops, and processes as
separate entries, while our format combines them into a single
line. Figure 3 depicts how we aggregate the data using different
colored boxes. For example, the entire program is run twice,
and the event “main<compute” is a three-iteration loop. Each
of the two processes generates three loop-iteration entries
twice (highlighted in blue boxes in Figure 3(a)). The four
blue boxes are then combined into a single line in Figure 3(b)
(also indicated with a blue box). Note that, as we indicated in
Section IV-B, only the values of inconsistent attributes are
concatenated. Other colored boxes in Figure 3 (a) and (b)
follow the same combination pattern.

In addition, to be able to parse the data correctly when
performing post-hoc analysis, we must add delimiters between
timings to distinguish between the specific program entities. In
our format (Figure 3(b)), the inconsistent values are grouped
by processes (increasing rank order) and separated by the
delimiter “|” at the very outer level. Next, the values are
grouped by repeated executions (increasing iteration order)
using the “—” delimiter. Finally, they are grouped by loops
“+”. An example of our format can be seen in Figure 3(b).
When compared to a standard CSV format(Figure 3(a)), our
approach is much more compact, with no redundancies.

113

VII. CASE STUDIES

In this section, we first demonstrate the performance of our
profiling system with two open-source applications: (1) a tran-
sitive closure (TC) built on top of balanced parallel relational
algebra (BPRA) [18], and (2) a parallel Fast Fourier Transform
(FFT) built on top of the FFTW-3 [29]. We then demonstrate
the scalability and efficacy of our profiling framework for
identifying bottlenecks at scale in a parallel I/O library [14].

FFTW3 is a widely used open-source library that computes
the discrete Fourier transform (DFT) in parallel using MPIL.
We repeatedly run the parallel FFT application (the size of
DFT complex N = P? x 1024 bytes) with 20 and 3,000
iterations, which we refer to as FFT-20 and FFT-3000. FFT-
3000, runs for approximately 5 minutes and represents a
typical application running for many iterations. We profiled
FFT-20 and FFT-3000 with TinyProf and Caliper, shown
in the first three rows in Table II. For FFT-20, TinyProf
outperforms Caliper significantly at P = 4,096 (Overhead:
0.102% vs. 53.82%), where the total cost is dominated by I/O
(0.056s vs. 30.89s). For FFT-3000, we only report the result at

512256128 64 32 16 8 4 2 1
Aggregator count / File count

(a) P=512

10.001

4.00
2.00
1.00-

0.40-
0.201
0.101
0.04+

Time (s), log-scale

4k 2k 1k 51225612864 32 16 8 4 2 1
Aggregator count / File count

(b) P = 4096

Fig. 6: Results for the performance of the three-phase 1/O
with varying number of aggregators when (a) P = 512 and
(b) P = 4096.

P = 512 for TinyProf (3"¢ row) since the 1/O time of Caliper
was too huge to capture. Our tool still runs well for a nearly
5-minute execution with only 0.226% overhead.

Balanced parallel relational algebra (BPRA) [18] is an open-
source library that maps database tuples to MPI processes in
a dynamically balanced manner. A classic application built
on this library computes an input graph’s transitive closure
(TC) [30]. We use a graph of 412,148 edges obtained from
the Suite Sparse Matrix collection [31] as our input graph. The
performance results of profiling with TinyProf and Caliper at
P = 1,024 are shown in the 4, and 5;, rows of the table.
The results demonstrate that TinyProf is significantly faster
than Caliper, whose I/O overhead dominates total runtime
(1401.19s). This performance can be attributed to the file size
and the I/O scheme. For example, Caliper’s file size at 1,024
processes is 162MB compared to 27MB of TinyProf. Further-
more, Caliper uses no file I/O optimizations and has many
small-size sub-optimal file accesses. In addition, we enable
the error-tolerance mechanism for this application (referred
to as TC(ET)), which dumps an intermediate output every 2
seconds (in total, 122 outputs are dumped). The result is shown
in the last row of the table. Our I/O overhead is still pretty
low (2.382s).

(—— HPCToolkit-100 —— HPCToolkit-1 Caliper TinyProf |
0 40.01 1 40.07
% 10.01 % 10.07
2 40 2 401
Ot 2 10
g | /_/ g O 4- \/’
£ ol o
1k 2k 4k 8k 16k 32k Ik 2k 4k 8k 16k 32k
(a) Process count (c) Process count
——JApplication 163_6 [Application 134-8
© 40.01 %; = © 40 .01 [TinyProf annotation] -
= TyPro T g = [TinyProf 10 =
2 20.0+ [—JCaliper annotation — o 2 - Caliper annotation 6 Q
&n1() ()1 T Caliper 10 -4% 2020.0- Caliper 10 Lé
= s = - 4.8
2 40 H || LE 2100 - g
~ (< O ~ -
£ 29 1 ﬂ = £ s il
3 1 'O- i O< =l 40' | : A 0
1k 2k 4k 8k 16k 32k

1k 2k 4k 8k 16k 32k
Process count

Weak Scaling

Process count

Strong Scaling

Fig. 7: Results for weak (left) and strong (right) scaling are presented. In figures (a) and (c), TinyProf’s profiling cost (=
total-cost - application-cost) demonstrates superior efficiency over HPCToolkit-100, HPCToolkit-1, and Caliper. Figures (b)
and (d) detail application, annotations, and I/O overheads. Notably, TinyProf outperforms Caliper, with a particular advantage
in reducing I/O costs. The black lines depicted in figures (b) and (d) represent the frequency of calls to the annotation APIL.

VIII. EVALUATION

In this section, we evaluate the performance of TinyProf via
a series of experiments using a parallel I/O based application.
The goal of our experiments is to demonstrate the salient
features of our profiling framework— low performance and
storage overhead, eventually positioning TinyProf as a system
to enable continuous introspection for large scale applications.

Target platform: We conducted a series of experiments on
the Theta [32] supercomputer at Argonne National Laboratory
to evaluate the efficacy and performance of both TinyProf’s
profiling. Theta is a Cray machine with a peak performance of
11.69 petaflops, offers 281,088 compute cores, 843.264 TiB
of DDR4 RAM, 70.272 TiB of MCDRAM, and 10 PiB of
storage.

Target application: We use a parallel I/O library [14], [33]
that enables I/O for multiresolution data format as a use-case.
With increasing high-resolution scientific data being generated,
it puts pressure on existing analysis tools to derive scientific
insights. One solution to address it is to transform the data on
the fly (before writing) to a multiresolution layout that supports
progressive access to data at varying scales. Additionally,
data can be compressed before the actual file I/O to reduce

the burden on data movement. Although this compressed-
multiresolution data layout has obvious advantages in fast
data-movement, it creates a load imbalance.

The data movement pipeline of the parallel I/O system for
a compressed, hierarchical data layout comprises five phases:
(1) patch distribution, (2) hierarchy creation, (3) compression,
(4) aggregation, and (5) actual file I/O. Patch distribution
partitions the entire simulation data into smaller patch sizes
(each patch is a data chunk) that eventually get transformed
using discrete wavelet transform and compression [14]. Com-
pression creates imbalanced data-loads across processes, as
some processes can achieve better compression ratios than
others. Data aggregation [28], which is a commonly used
parallel I/O optimization technique, if performed agnostic of
this imbalance, will lead to sub-optimal performance.

Experiments configuration: To evaluate the performance of
the profiling capabilities of TinyProf, we conduct four sets of
experiments: (a) benchmark the three-phase I/O to demonstrate
the importance of the tunable data aggregation scheme (Sec-
tion VIII-A), (b) perform weak and strong scaling experiments
to compare performance against Caliper and HPCToolkit (Sec-
tion VIII-B), (c) overhead analysis, to compute the overhead

[T Application B TinyProf
P = 1024 P = 2048 P = 4096
100%1 i oy oy f il 100%{ o i i jm 100%{pm p=y =2 22 22
80% 80% 80%
60% 60% 1 60%-
94.5| [94.6] [95.0, 95.0[949 94.7| [94.5| 94.8| (94.7| 94.7] 95.8 (96.5| [96.7| [96.6] [96.6|
40% 40% 40%-
20% - 20% 20%-
0%"10 20 30 40 50 °% 10 20 30 40 50 °%"10 20 30 40 50
P =28192 P =16384 P =32768
100%1 355 248 L85 185 194 | A83 L L8 L33 L% ()07 283 284 LB LB LS
80% 80% 80%
60% 60% 609
97.3| 97.8 P8.0| P8.2| [98.0 97.4| P8.0[P8.5| [98.7] [98.7 96.7| [98.00 198.3] P8.6[[98.5
40% 40%- 40%
20% 20% 20%
0%~10 20 30 40 50 0%~ 20 30 40 30 0%~10 20 30 40 50

Number of Iterations

Number of Iterations

Number of Iterations

Fig. 8: TinyProf incurs minimal overhead (around 3%) at varying scales and for different iteration counts.

of profiling in a production environment (Section VIII-C).
and (d) I/O overhead of reading, to demonstrate the efficacy
of our compact data format for post-hoc analysis systems
against Caplier (Section VIII-D). We used the MPI-everywhere
programming model that maps one rank per core (e.g., we
have 64 processes per node on Theta). Additionally, for a
fair comparison with Caliper and HPCToolkit, we refrain
from doing temporal checkpointing feature in our experiments.
Instead, the program only outputs the final profiles at the end
of its execution.

A. Tunable Three-phase 1I/O

Caliper and HPCToolkit support two parallel I/O modes:
single-process I/O (one process gathers all the data and writes
a single file) or file-per-process 1/O, while TinyProf uses a
tunable three-phase /0. We evaluate the efficacy of TinyProf’s
I/0 scheme at two process counts, P = 512 and P = 4,096. At
both these scales, we vary the total number of aggregators (and
thus the total number of files) and measure the aggregate 1/0
time. We vary the aggregator count (A) from P down to 1 (P,
P/2, P/4,...,4,2,1), which respectively corresponds to file-
per-process /O and single-file I/O mode. We measure the total
time to perform I/O which includes both the inter-process data
aggregation time and the actual file I/O time. The results for
these two sets of runs are shown in Figure 6. Both results show
a similar U - shaped trend, where the optimal performance is
reached roughly around A = P/16 aggregators. These results
show the importance of the three-phase 1/O, as both file-

per-process I/O and single-file I/O demonstrate sub-optimal
performance. At P = 4,096, the optimal I/O time observed
at A = P/16 is 2x faster than file-per-process I/O and 10x
faster than single-file I/O. Although the aggregator count (file
count) is a tunable parameter and must be set based on the
target file system, we used A = P/16 as the default for all
following experiments (best for Theta).

B. Scaling Studies

We perform weak and strong scaling experiments comparing
performance of TinyProf against Caliper and HPCToolkit.
TinyProf and Caliper annotate the same regions of code to
generate the same list of events, while HPCTookit uses the
recommended configuration (by theta) that samples 100 times
per second [34] (referred to as HPCToolkit-100). Additionally,
we also ran HPCToolkit with one sample per second (referred
to as HPCToolkit-1), a configuration that will have the best
running time, but will capture performance data very sparsely.
Meanwhile, Caliper’s “hatchet-region-profile” configuration is
used to dump the profile in hatchet format, resulting in the
most compact file format. We generate weak and strong
scaling characteristics for the profiles by running the target
application in weak and strong scaling modes. In both sets
of experiments, the total process counts varied from 1k to
32k. For all three profiling frameworks, we capture both the
application time and the profiling time. The profiling time is
the time taken by these libraries to collect performance-related
metrics, including annotation and file I/O time.

—o— TinyProf
Caliper (hatchet)
Caliper (cali)

w
(=]
1

File Size (MB)
—_ Do
o S

ﬂr——‘/'/.

O I 1 1 I
1024 2048 4096 8192 16384
0.8 4=*— TinyProf
— Caliper (hatchet)
> 0.6 1 Caliper (cali)
£
= 0.4
g
S 02—

0
1024 2048 4096 8192 16384

Process Count

Fig. 9: TinyProf’s compact format offers significant gains over
Caliper, both for file sizes (top) and reading performance for
post-analysis (bottom).

Results analysis: We plot the weak and strong scaling
results in Figures 7. We also record the total number of per-
process annotations made by Caliper and TinyProf for all
runs and plot them as black trendlines in Figures 7(b)(d).
Figure 7(b) shows that the annotation counts are roughly the
same for all process counts in weak scaling runs. For strong
scaling runs, as the total global workload remains fixed, we
observe a decrease in the total number of annotations with
increasing scale. Focusing just on TinyProf’s performance,
for both weak and strong scaling, we observe near-perfect
scaling till 8% processes — for strong scaling, we observe
a reduction in time with increasing process counts, and we
observe roughly the same time with increasing process counts
with weak scaling. The observed performance degradation at
16k and 32k processes can be attributed to communication
overhead and workload starvation.

Furthermore, we observe TinyProf outperforms both Caliper
and HPCToolkit at all scales for both weak and strong scal-
ing. For weak scaling, TinyProf (0.397s) is 95.11x faster
than Caliper (37.76s) and 5.29x and 123.48x faster than
HPCToolkit-1 (2.10s) and HPCToolkit-100 (49.03s) at 32k
processes. The performance trends of TinyProf and Caliper
can be further explained by breaking down the total profiling
time into two components: (1) annotation time, which is the
time taken to capture the performance metrics; and (2) /O

time, which is the time taken by the three-phase I/O scheme.
We plot this time breakdown along with the application time
for Caliper and TinyProf in Figure 7(b)(d). Here we can make
the following observations: (a) the actual annotation cost is
negligible for both Caliper (light orange bars) and TinyProf
(light green bars); (b) Caliper, which by default follows the
single-file I/O paradigm, takes significantly more time than
the three-phase I/O of TinyProf (dark green bar vs. dark
orange bar); and (c) Caliper adds significant overhead to the
application (large orange bar on top of grey bar) as opposed to
TinyProf, which adds negligible overhead (small green bar on
top of grey bar). Overall, HPCToolkit-100 performs poorly,
while HPCToolkit-1 beats Caliper for all process counts.
Although HPCToolkit-1 performs well, it is likely that the
amount of data recorded is not enough for accurate profiling.

C. Overhead Analysis

Here, we evaluate the efficacy of TinyProf in a production
setting where applications typically run for several time steps.
A true test of a profiling system is when it continues to incur
low overhead at scale, even when run for several iterations.
To evaluate TinyProf on this front, we ran the application for
a varying number of timesteps and recorded the overhead that
TinyProf added for all these runs. We varied the total number
of iterations from 10 to 50 and ran our experiments at P =
1k to 32k. The results are plotted in Figure 8. We observe
that the overhead added by TinyProf remains consistent at
around 2 — 5% for all scales and iteration settings. This can
be attributed to three key factors: (a) efficient data structure;
(b) optimal parallel I/O using the three-phase I/O scheme; and
(c) the compact file format that reduces data redundancies.
Therefore, we can also make our case for using 7TinyProf to
achieve continuous introspection for HPC applications at scale.

D. I/O Overhead of Reading

To demonstrate the efficacy of our compact data format for
post-hoc analysis and visualization systems, we evaluated the
I/O overhead of loading the profiles in this section. To make a
fair comparison, we only compare the file sizes (Figure 9 top)
and loading times (Figure 9 bottom) for the profiles generated
by Caliper. Our profiles are easy to convert into the required
formats for any web-based or standalone visualization system.
To simplify this comparison, we estimate the loading time
using D3 [35] read functions for CSV and JSON formats,
since D3 is widely used in many web-based visualization
systems. Furthermore, Caliper can output the performance data
in two formats: a) hatchet (in JSON) and b) cali (a compressed
format). Comparing against these two formats, our proposed
format (green lines) is both space-efficient and therefore has
a lower loading time (45x speedup for 16k process counts).

IX. CONCLUSION

In this paper, we presented TinyProf, a lightweight end-
to-end system for profiling the performance of large-scale
applications. Our simple annotation API enables easy inte-
gration with parallel applications. TinyProf incorporates a

custom file format and deploys an efficient in-memory data
structure, along with a scalable three-phase I/O scheme, to
scale I/O to high process counts. Experimental results demon-
strate how the TinyProf introduces a smaller runtime overhead
and requires less storage when compared to state-of-the-art
profiling libraries such as Caliper and HPCToolkit. While
TinyProf currently mainly supports MPI-based applications,
the customizable performance metrics feature of the system
can be used to coarsely profile the performance of other shared
memory programming models such as OpenMP or CUDA
(when run in MPI+X mode). As part of our future work, we
look forward to extending TinyProf to directly interface and
profile such programming models through tools (e.g., OMPT).

X. ACKNOWLEDGEMENT

This work was partly funded by NSF Collaborative Re-
search Awards 2401274 and 2221812, and NSF PPoSS Plan-
ning and Large awards 2217036 and 2316157. We are thankful
to the ALCF’s Director’s Discretionary (DD) program for
providing us with compute hours to run our experiments on
Theta located at the Argonne National Laboratory.

REFERENCES

[1] J. Shen et al., “Workload partitioning for accelerating applications on
heterogeneous platforms,” IEEE Trans. on Para. and Dist. Sys., vol. 27,
2015.

[2] K. E. Isaacs, A. Giménez, 1. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the art of performance visual-
ization.” in EuroVis (STARs), 2014.

[3] H. T. Nguyen, A. Bhatele, N. Jain, S. P. Kesavan, H. Bhatia, T. Gamblin,
K.-L. Ma, and P.-T. Bremer, “Visualizing hierarchical performance
profiles of parallel codes using callflow,” IEEE Trans. on Vis. and Comp.
Graph., vol. 27, no. 4, pp. 2455-2468, 2019.

[4] D. Skinner and W. Kramer, “Understanding the causes of performance
variability in hpc workloads,” in IEEE International. 2005 Proceedings
of the IEEE Workload Characterization Symposium, 2005. 1EEE, 2005,
pp. 137-149.

[5]1 L. Zheng et al., “Vapro: performance variance detection and diagnosis
for production-run parallel applications,” in Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2022, pp. 150-162.

[6] D. Nichols, A. Marathe, K. Shoga, T. Gamblin, and A. Bhatele,
“Resource utilization aware job scheduling to mitigate performance vari-
ability,” in 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 1EEE, 2022, pp. 335-345.

[71 X. Aguilar, “Performance monitoring, analysis, and real-time introspec-
tion on large-scale parallel systems,” Ph.D. dissertation, KTH Royal
Institute of Technology, 2020.

[8] D. Boehme, P. Aschwanden, O. Pearce, K. Weiss, and M. LeGendre,
“Ubiquitous performance analysis,” in High Performance Computing:
36th International Conference, ISC High Performance 2021, Virtual
Event, June 24-July 2, 2021, Proceedings 36. Springer, 2021, pp.
431-449.

[9] J. R. Madsen et al., “Timemory: modular performance analysis for hpc,”

in Int. Conf. on High Perf. Comp. Springer, 2020, pp. 434-452.

D. Boehme et al., “Caliper: performance introspection for hpc software

stacks,” in Proc. of the Int. Conf. for High Perf. Comp., Net., Stor. and

Anal. 1EEE, 2016.

D. an Mey et al., “Score-p: A unified performance measurement system

for petascale applications,” in Comp. in High Perf. Springer, 2011, pp.

85-97.

L. Adhianto et al., “Hpctoolkit: Tools for performance analysis of

optimized parallel programs,” Conc. and Comp.: Prac. and Exp., 2010.

P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7

characterization of petascale i/o workloads,” in 2009 IEEE International

Conference on Cluster Computing and Workshops. 1EEE, 2009, pp. 1-

10.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

K. Fan, D. Hoang, S. Petruzza, T. Gilray, V. Pascucci, and S. Kumar,
“Load-balancing parallel i/o of compressed hierarchical layouts,” in 2021
IEEE 28th International Conference on High Performance Computing,
Data, and Analytics (HiPC). 1EEE, 2021, pp. 343-353.

S. Kesavan, H. Bhatia, A. Bhatele, S. Brink, O. Pearce, T. Gamblin, P.-T.
Bremer, and K.-L. Ma, “Scalable comparative visualization of ensembles
of call graphs,” Trans. on Vis. and Comp. Graph., 2021.

A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the overgrowth
in parallel profiles,” in Proc. of the Int. Conf. for High Perf. Comp., Net.,
Stor. and Anal., 2019, pp. 1-21.

S. Brink, I. Lumsden, C. Scully-Allison, K. Williams, O. Pearce,
T. Gamblin, M. Taufer, K. E. Isaacs, and A. Bhatele, “Usability and
performance improvements in hatchet,” in 2020 IEEE/ACM Interna-
tional Workshop on HPC User Support Tools (HUST) and Workshop on
Programming and Performance Visualization Tools (ProTools). 1EEE,
2020, pp. 49-58.

S. Kumar and T. Gilray, “Distributed relational algebra at scale,” in
International Conference on High Performance Computing, Data, and
Analytics, 2019.

The Open—SpeedShop Team, “Open—SpeedShop for Linux,” https://
openspeedshop.org/, online; accessed 29 January 2022.

S. S. Shende and A. D. Malony, “The tau parallel performance system,”
Int. Jrnl. of High Perf. Comp. App., vol. 20, no. 2, pp. 287-311, 2006.
P. Kousha et al., “Inam: Cross-stack profiling and analysis of com-
munication in mpi-based applications,” in Practice and Experience in
Advanced Research Computing, 2021, pp. 1-11.

O. Ibidunmoye, F. Herndndez-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing Sur-
veys (CSUR), vol. 48, no. 1, pp. 1-35, 2015.

Y. J. Lo et al., “Roofline model toolkit: A practical tool for architectural
and program analysis,” in International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 2014.

A. D. Malony, S. Ramesh, K. Huck, C. Wood, and S. Shendey,
“Towards runtime analytics in a parallel performance system,” in 2079
International Conference on High Performance Computing & Simulation
(HPCS). 1EEE, 2019, pp. 559-566.

S. Brink, M. McKinsey, D. Boehme, C. Scully-Allison, I. Lumsden,
D. Hawkins, T. Burgess, V. Lama, J. Liittgau, K. E. Isaacs et al.,
“Thicket: Seeing the performance experiment forest for the individual
run trees,” in Proceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing, 2023, pp. 281-293.
T. Islam, A. Ayala, Q. Jensen, and K. Ibrahim, “Toward a programmable
analysis and visualization framework for interactive performance analyt-
ics,” in 2019 IEEE/ACM International Workshop on Programming and
Performance Visualization Tools (ProTools). 1EEE, 2019, pp. 70-77.
K. Gao, W.-k. Liao, A. Nisar, A. Choudhary, R. Ross, and R. Latham,
“Using subfiling to improve programming flexibility and performance
of parallel shared-file i/0,” in 2009 International Conference on Parallel
Processing. 1EEE, 2009, pp. 470-477.

S. Kumar et al., “Scalable data management of the uintah simulation
framework for next-generation engineering problems with radiation,” in
Asian Conference on Supercomputing Frontiers. Springer, Cham, 2018,
pp. 219-240.

S. G. Johnson and M. Frigo, “A modified split-radix fft with fewer
arithmetic operations,” IEEE Transactions on Signal Processing, pp.
111-119, 2006.

S. Kumar and T. Gilray, “Load-balancing parallel relational algebra,”
in High Performance Computing: 35th International Conference, I1SC
High Performance 2020, Frankfurt/Main, Germany, Proceedings 35.
Springer, 2020, pp. 288-308.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.

S. Parker, V. Morozov, S. Chunduri, K. Harms, C. Knight, and K. Ku-
maran, “Early evaluation of the cray xc40 xeon phi system ‘theta’at
argonne,” Argonne National Lab.(ANL), Argonne, IL (United States),
Tech. Rep., 2017.

S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V. Pascucci,
R. Ross, J. Chen, H. Kolla, and R. Grout, “Pidx: Efficient parallel i/o
for multi-resolution multi-dimensional scientific datasets,” in 2011 IEEE
International Conference on Cluster Computing.

HPCToolkit on Theta. [Online]. Available: https://www.alcf.anl.gov/
support-center/training-assets/hpctoolkit- theta

D3 Home Page. [Online]. Available: https://d3js.org/

https://openspeedshop.org/
https://openspeedshop.org/
https://www.alcf.anl.gov/support-center/training-assets/hpctoolkit-theta
https://www.alcf.anl.gov/support-center/training-assets/hpctoolkit-theta
https://d3js.org/

	Introduction
	Related Work
	Challenges with profiling at high scales
	Parallel file I/O challenge at scale
	Storage footprint of profile

	Efficient In-memory data structure
	Profiling performance data using annotation API
	Event-map

	Custom three-phase I/O scheme
	Efficient events synchronization (phase 1)
	Data aggregation and file I/O (phases 2 and 3)

	Compact data format of profiles
	Case studies
	Evaluation
	Tunable Three-phase I/O
	Scaling Studies
	Overhead Analysis
	I/O Overhead of Reading

	Conclusion
	Acknowledgement
	References

