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Abstract—MPI_Alltoall is a commonly used collective that
allows a fixed-size data block to be exchanged between every pair
of processes. The function can be implemented through a loga-
rithmic number of point-to-point communication rounds, where
the exact number of rounds and total data exchanged among
processes depend on the log base (radix). This paper presents a
mathematical foundation for studying all communication patterns
for the all-to-all collective by developing parameterized formulas
for total communication rounds and data exchanged. The model
is used to narrow down a radix,

√
P (P : process count), that

effectively balances latency and bandwidth concerns, yielding
optimal performance—as also confirmed via evaluation on the
Theta and Polaris supercomputers at ANL. We also present a
novel two-layer tunable radix algorithm to take advantage of
the shared-memory parallelism offered by modern systems. The
algorithm decouples communication rounds into two phases that
can be individually optimized to take advantage of the shared
memory and high-speed interconnect separately. Our approach
demonstrates improvements of up to 3.8× on Theta and 4.2× on
Polaris over the vendor-optimized MPICH-based implementation
of MPI_Alltoall for fast Fourier transform application.

I. INTRODUCTION

MPI_Alltoall is a widely used collective that facil-
itates all-to-all inter-process data exchanges [1], [2]. It is
implemented through a logarithmic number of point-to-point
communication rounds, with the extreme cases achieved with
a log base of 2 and P (P : process count). The log2 imple-
mentation, also known as Bruck, takes the fewest possible
number of communication rounds (logP2 ) while transmitting
an exaggerated amount of data. The logP implementation, on
the other hand, takes the largest possible number of rounds
(P -1) while transmitting only the exact required data (similar
to the linear time Spread-out algorithm [3]). Historically, only
these two radices have been used by MPI implementations
MPICH [4] and OpenMPI [5], [6].

The decision to select between the two radices is made
by modeling the communication cost in terms of latency and
bandwidth [7]. Latency is the fixed time-cost per communi-
cation step, independent of message size, whereas bandwidth
is the variable transfer time per byte [8]. All-to-all involving
short-sized messages are latency-bound [9] and thus naturally
benefit from a lower-radix implementation that minimizes the
number of communication rounds. On the other hand, all-to-all
involving long messages are bandwidth-bound and, therefore,
benefit from a higher-radix implementation that minimizes the
total data transmitted.

The past few years have witnessed a renewed interest in
implementing collectives [10], particularly all-reduce and all-
to-all. This can be attributed to their use to support the
communication requirements of parallel data-driven AI/ML
applications [11], [12]. A work of specific interest [13] has
presented implementations of all-to-all with higher radices.
As a result, both K (total communication rounds) and D
(total transmitted data-blocks) can be tuned based on the radix.
However, it is crucial to correctly set the radix’s value correctly
to extract performance from such a tunable implementation.
While [13] presents a high-radix implementation, it does not
provide a heuristic to select the optimal radix.

Generally, as the radix increases from 2 to P , there is
an increase in the total number of communication rounds
(K) and a corresponding decrease in the overall number
of data-blocks exchanged (D). So, as the radix r increases,
there is a transition from latency-bound to bandwidth-bound
communication. This paper observes that this transition is not
smooth. We find that both the total number of communication
rounds (K) and total data-blocks transmitted (D) are C0

continuous and C1 discontinuous (see Figure 4). The point
of discontinuity occurs at radix r =

√
P . Up until

√
P , we

observe a higher rate of increase for D w.r.t. r, and after√
P , the rate of increase is distinctly slower. Essentially, radix

r =
√
P strikes a balance between latency and bandwidth

by increasing the data transmission bandwidth (compared to
radix P ) enough to saturate the network without significantly
increasing the latency cost (compared to radix 2).

A key novelty of this paper is its derivation of precise
parametric formulas for both D and K for varying radices,
which form the basis for the derivation of the optimal radix
(≈

√
P ). The formulas are then translated into an open-

sourced parameterized algorithm referred to as tunable-radix
all-to-all (TRA), in which r can be tuned from 2 to P . We
perform a detailed experimental investigation, varying r and
P . Our empirical evaluation also confirms that r ≈

√
P

yields near-optimal performance in most cases — matching
our theoretical hypothesis.

Another contribution of this paper is the two-layer tunable
radix algorithm (referred to as TRA2), which takes advantage
of the node-level shared memory parallelism available on
modern HPC systems. TRA2 decouples its communication
rounds into two epochs: intra-node data exchanges that benefit
from latency-bound exchanges (low radix) and inter-node data
exchanges that benefit from bandwidth-bound exchanges (high



radix). The two communication rounds can be independently
tuned using two distinct radices.

In summary, this paper makes the following contributions:
1) Developed precise mathematical formulas to study the

entire range of all-to-all data exchange patterns.
2) From both the formulas and experiments, made a deduction

that TRA with r ≈
√
P yields near-optimal performance.

3) Developed TRA2 that further improves performance by
employing a locality-aware communication pattern. TRA2
decouples the communication rounds into local intra-node
data and global inter-node data exchange phases.

4) Performed a detailed evaluation of our techniques using
scaling studies (up to 16K processes) using microbench-
marks and real applications on Theta and Polaris.

Compared to the vendor’s MPI_Alltoall implementa-
tion (Cray’s proprietary MPI, based on MPICH [14]), our ap-
proach is up to 5x faster for some micro-benchmarks and up to
4x faster for practical application (Fast Fourier transform [15]).

II. RELATED WORK

All-to-all data shuffle is known to be difficult to scale due
to the quadratic nature of its workload. Some studies [16],
[17], [18], [19] have been done to optimize uniform all-to-all
algorithms. Recent works have looked into optimizing all-to-
all for GPU-based clusters [20], [21]. Most relevant to our
work is [13], which presented a high-radix implementation
of all-to-all. Our paper builds on that work by developing a
formal model for the tunable algorithm that helps deduce an
optimal radix. Additionally, we created a two-layer algorithm
that takes advantage of shared memory available on modern
HPC systems.

Bruck algorithm [9] is an efficient implementation of all-to-all
collective that reduces K from P to logP2 by using radix r = 2.
This algorithm comprises three phases: an initial local rotation
phase, a communication phase containing multiple point-to-
point data exchange rounds, and a final local rotation phase.
The seminal paper [16], studied the performance of all-to-
all for varying radices (r). The paper found that neither of
the two extreme cases, r = 2 or r = P is the best overall
choice. Despite this observation, the popular MPI libraries
only implement the two extreme ends with r = 2 and r = P .
The paper, however, lacked exposition on three fronts: 1)
formulas for calculating K and D when logPr is not an integer;
2) derivation of the optimal radix of the algorithm; and 3)
detailed experimental evaluation at high scales due to the
hardware limitation (they only used 64 processes). We address
these three shortcomings in our work.

Optimizations of the Bruck: Träff et al. [19] investigated
two incremental enhancements to Bruck. They first presented
modified Bruck, which eliminates the final rotation phase by
rotating the data blocks in a different order at the first step,
anticipating the final block order. They then introduced a
zero-copy Bruck algorithm, which eliminates internal mem-
ory copies required by the store-and-forward algorithm by
employing a temporary buffer. This optimization, however,

increases the overhead for combining the data sent from two
buffers and only works well for a narrow range of message
sizes. In addition, this paper further reduces explicit copying
by using MPI-derived datatypes. However, the results revealed
that using derived datatypes is less effective than using explicit
buffer management (using memcpy). Cong Xu et al. [22]
proposed utilizing a rotation indices array to store the rotated
indices during the initial rotation phase rather than rotating
the actual data-blocks. This method has shown performance
improvement for the Bruck algorithm when D is small. Ke
Fan et al. [23] optimized the Bruck algorithm by combining
two ideas from [19], [22] for removing the initial and final
rotation phases.

MPI collective algorithms with varying radices: Wilkins et
al. [24] recent work presents parameterized implementations
of popular collectives all reduce, broadcast, all-gather, and
all-reduce. Similar to our work, this paper demonstrates that
the commonly used radix of 2 and P do not necessarily
demonstrate optimal performance. This work, however, does
not deduce optimal prefixes and does not focus on all-to-all
collectives. Jocksch et al. [25] developed a fully connected k-
port (k ≥ 1) algorithm to be used for all-to-all data exchanges
in FFT computation. Under this model, each process can
exchange (send and receive) k distinct messages with k other
processes simultaneously. To maximize the performance of the
k-port model, the radix of the algorithm is equal to the number
of ports plus one (k + 1). In this case, they modified radices
when k changed. However, they didn’t study the varying radix
when k is fixed. Andreas et al. [26] investigated the collec-
tive communication operations allgatherv, reduce scatter, and
allreduce with varying radices. The radix is selected based
on their measurements of communication times for different
message sizes during the installation phase of the library. They
claimed that applying high and low radices for short and long
messages is efficient, respectively. However, they didn’t show
any experimental details about selecting the radix in the paper.
Gainaru et al. [27] presented a formula for calculating the
required number of communication rounds when w = logPr
is not an integer. However, the authors mainly focused on
optimizing the Bruck algorithm with various memory layouts.
They did not conduct any experiments to investigate the effects
of varying radices.

Locality-aware collectives: Being aware of the physical lo-
cation of processes (ranks) is essential for optimizing the
performance of collectives, as communication costs can vary
between pairs of processes; for example, intra-node com-
munication is cheaper than inter-node communication. Bi-
enz et al. [28] optimized the Bruck algorithm with locality
awareness for allgather by grouping processes into groups
of low-communication overhead regions. Jocksch et al. [25]
presented an algorithm to exploit shared memory parallelism
by explicitly creating a shared buffer for sending and receiv-
ing data within every node. Graham et al. [29] described
a new hierarchical collective communication framework and
demonstrated performance optimization for MPI barrier and



Fig. 1: An example of TRA algorithm with r = 3 and P = 8 processes: 1⃝ is initial rotation phase – moving up rank data-
blocks; the first data-block for each process after rotation is highlighted in grey. 2⃝, 3⃝, 4⃝, 5⃝ are 4 communication rounds;
each process exchanges some non-continuous data-blocks per round that are highlighted in a unique color. 6⃝ is final rotation
phase; the first data-block after rotation is highlighted in grey. The last figure shows the sent data-blocks in 3-representations
per round, matching the colors with the previous four communication rounds.

broadcast. Jin Zhang et al. [30] optimized MPI collective
communications by proposing a process-matching approach,
by formalising the sequence of point-to-point communication
operations as a graph mapping task.

III. TUNABLE-RADIX ALL-TO-ALL (TRA) ALGORITHM

We have developed the tunable radix all-to-all algorithm
(TRA), where the underlying logarithmic radix can be tuned,
which in turn tunes the number of communication rounds (K)
and the total number of data-blocks transmitted (D). In this
section, we derive the parametric formulas for both K and D,
and use them to obtain an optimal radix.

Setup: With P processes, MPI_Alltoall can be ex-
pressed as follows. Every process has a send buffer (initialized
with data), logically made of P data-blocks (S[0 . . . P − 1]),
each with n b-byte elements. Similarly, processes also have
a receive buffer (initially empty), logically made out of P
data-blocks (R[0 . . . P − 1]) with n b-byte (data-block size:
(n× b)) elements. Both the send buffer and the receive buffer
are contiguous 1-D arrays of size P × n × b bytes where
all data-blocks S[0 . . . P − 1] and R[0 . . . P − 1] are laid
out in increasing block order. During communication, every
process with rank p (0 ≦ p ≦ P − 1) transmits the data-block
S[i] (0 ≦ i ≦ P − 1) to a process with rank i and receives a
data-block from rank i into the data-block R[i].

Algorithm steps: In this section, we detail the three key
steps of TRA: (a) an initial local rotation phase; (b) an inter-
process data exchange phase with multiple communication
rounds; and (c) a final local rotation phase. Both the initial and
final rotation phases are independent of the radix (r). The data
exchange phase is parameterized under the radix (r), which
can range from 2 to P (2 ≦ r ≦ P ). In the communication
phase, indices of all P data-blocks are first encoded using the
r-base. The number of digits for r-base encoding for every
data-block, w, is therefore = ⌈logPr ⌉. Each communication
round k is identified by two variables: x (0 ≤ x < w) and
z (1 ≤ z < r). For example, when w = 2 and r = 3, the
first three communication rounds correspond to x = 0 and z
ranges from 0 to 2 (inclusive) (see Figure 1, matches blue,
green, pink rounds respectively). The three steps of TRA can
be precisely formulated as follows:

1) Local shift of data-blocks from S to R: R[i] = S[(p +
i)%P ] (see Figure 1 1⃝).

2) Communication steps: In each step k parameterized by x
and z (translating to a nested for-loop), process p sends to
process ((p+ z × rx)%P ) all the data-blocks R[i] whose
xth bit of i in r-base is z. Process p receives data from
process ((p − z × rx + P )%P ) into S, and replaces R[i]
(just sent) locally (see Figure 1 2⃝- 5⃝).

3) Local inverse shift of data-blocks from R to R: R[i] =



R[(p− i)%P ] (see Figure 1 6⃝).

A. Parameterizing K and D

The communication step of TRA consists of K (logP2 ≦
K ≦ P ) point-to-point exchange rounds where a process
transmits a total of D data-blocks across all rounds. K and
D are negatively correlation – higher K implies smaller D
and vice versa. Using the popularly used topology agnostic
hockney model [31], the performance of any point-to-point
communication can be modeled as a function of its latency
(α) and bandwidth (β) costs. Latency (α) is the fixed cost per
communication step, which is independent of communication
size, whereas bandwidth (β) is the transfer time per byte
[8]. Suppose we transfer m-byte message from one process
to another; then the communication cost can be modeled as
T = α+m×β. Under this paradigm, the cost of an all-to-all
exchange can be expressed as α×K+β×D×S, where S is
the size in bytes of every data-block. Therefore, it is critical
to quantify K and D, with K being a latency-related metric
and D being a bandwidth-related metric. To this end, in this
section, we present four propositions with formulas for both
K and D, where they are parameterized as a function of the
radix r. Specifically, the first two propositions are designed
for the case in which P = rw, while the last two are designed
for a more general case in which P < rw, in which case
w = ⌈logPr ⌉. Recall that w is the number of digits needed for
r-base encoding of the P data-blocks.

Proposition 1: When P = rw (2 ≤ r < P ), total number
of communication rounds, K = w(r − 1).

Proof 1: Let’s focus on one process, P0. The all-to-all
operation requires P − 1 point-to-point rounds if P0 sends
one data-block per round. With r-base, one point-to-point
round can be divided into multiple rounds. For example, P0
transmitting its 5th data-block to P5 (5 is 12 with 3-base
encoding: 1 × 3 + 2) with communication distance L = 5
(5 − 0) can be broken in two steps: P0 transmitting to P2
with L = (2 − 0) = 2 (Figure 1 2⃝ to 3⃝)) and then P2 to
P5 with L = (5 − 2) = 3 (Figure 1 3⃝ to 4⃝)) (highlighted
by red boxes). If all P − 1 rounds are decomposed in the
same manner, the communication rounds can be rescheduled
by grouping all data-blocks based on the values of x and z that
designate a new communication round k, assuming xth bit of
a data-block index with r-base is z (e.g., for the index 12 in
3-base, z = 2 at x = 0 and z = 1 when x = 1). Plus, z = 0
for any x is meaningless (The index 0 with r-base is owned by
each process itself). Therefore, x ranges from 0 to w− 1 and
z ranges from 1 to z−1, resulting in w(r−1) communication
rounds in total. For example, as shown in Figure 2, P0 groups
all data-blocks whose 0th bit is 1 (colored in blue) at the first
communication round. The entire all-to-all communication, in
this instance, can be finished in four rounds. In general, the
all-to-all operation can be done using two nested loops, with
the outer loop traversing w digits with r-base and the inner
loop traversing each digit’s r − 1 distinct non-zero values.
Therefore, K = w(r − 1).

Fig. 2: An example of the TRA algorithm with r = 3 and P =
9 processes, using an illustration of process P to demonstrate
how to complete the algorithm in 4 rounds. We initially encode
indexes of data-blocks using r-base encoding that uses 2 digits
( 1⃝). Then, P0 sends all data-blocks whose xth digit is value
z (1 ≤ z < r) to the process with distance (z×rx) each round
– 2⃝ first round to P1; 3⃝ second round to P2; 4⃝ third round
to P3; 5⃝ first round to P6. Each round treats every rx+1

data-blocks as a group. The first group is highlighted with a
red box. A sent continuous unit per round (starts from rx and
contains rx data-blocks) in each colored group.

Proposition 2: When P = rw, total number of transmitted
data blocks, D = w(r − 1)× rw−1.

Proof 2: To finish the method in exactly w(r − 1) rounds,
each process must transmit all data-blocks whose xth digit is
equal to z (e.g., Figure 2 2⃝). With r-base, we partition all data-
blocks into g = P/r(x+1) = r(w−x−1) groups, with r(x+1)

data-blocks in each group (e.g., in Figure 2 2⃝ (x = 0 and z =
1), there are 3 groups where each has 3 data-blocks (the first
group per round is highlighted with red box). We suppose that
the continuous rx data-blocks with the same xth digit form a
unit (e.g., in Figure 2 4⃝, 3 pink data-blocks are a unit, but in
Figure 2 2⃝, each data-block are a unit.). Then each group has
r units and each process transmits one unit with value z from
each group per round (e.g., in Figure 2 2⃝, each process sends
one blue unit from each of the 3 groups.). Therefore, each
process transfers g×rx = r(w−x−1)×rx = r(w−1) data-blocks
per round. That is each process transfers w(r−1)×rw−1 data-
blocks in total.

Proposition 3: When P < rw, total number of communica-
tion rounds K = w(r − 1)− ⌊(rw − P )/rw−1⌋.

Proof 3: Let P ′ = rw. In Proof 1, we showed that any
all-to-all algorithm requires w(r − 1) communication rounds
with P ′ processes. Compared to P ′, P excludes v values of the
highest (w−1)th digit with r-base. Assuming that d = P ′−P ,
then v = ⌊d/rw−1⌋, since each value z with xth bit has rw−1

data-blocks. This means (w− 1)th digit has only (r− 1− v)
distinct values (e.g., in Figure 3 6⃝, the 3rd digit only has value
1 (d = (27− 11) = 16, v = ⌊11/6⌋ = 1), (r − 1)− v = 1).).
Therefore, any all-to-all algorithm requires w(r − 2) + (r −
1 − v) = w(r − 1) − v = w(r − 1) − ⌊(rw − P )/rw−1⌋



Fig. 3: An example of the TRA algorithm with r = 3 and
P = 11 processes, using an illustration of process P0. 1⃝
encode indexes of data-blocks using r-base with 3 digits; 2⃝,
3⃝, 4⃝, 5⃝, 6⃝ are communication rounds.

communication rounds.

Proposition 4: When P < rw, lgc = P % rx+1 (0 ≤ x <
w), t = lgc− z × rx (1 ≤ z < r), and lc = ⌊P/rx+1⌋ × rx,
a communication round characterized by x and z transmits h
data-blocks:

1) h = lc, if (t ≤ 0))
2) h = lc+ rx, else if (⌊t/rx⌋ > 0)
3) h = lc+ t % rx, else

with, D =
∑w−1

x=0

∑r−1
z=1 h.

Proof 4: As stated previously, each process transmits one
unit from each of g groups per round, where a unit consists of
continuous rx data-blocks with the same xth digit (The first
group per round is highlighted with a red box in Figure 3). Due
to P < rw, the last group may have fewer data-blocks than
others (e.g., in Figure 3 3⃝, the last group only has 2 data-
blocks (100, 101).). Except for the last group, each process
transmits zth unit in each group per round, so that each process
sends at least lc = g× rx to others (e.g., in Figure 3 3⃝, there
are 4 groups, but 3 green units are transmitted.). Assuming
g = ⌊P/r(x+1)⌋, the number of data-block in the last group
is lgc = P % rx+1 (e.g., in Figure 3, when x = 0,
lgc = 11 % 3 = 2.). Let t = lgc − z × rx. If t ≤ 0, it
indicates that no data-blocks will be transmitted in the last
group; hence, each process sends lc data-blocks per round
(e.g., in Figure 3 3⃝, t = 0, so no data-blocks are sent in the
last group). If ⌊t/rx⌋ > 0, then the entire zth unit in the last
group is transmitted, so each process sends (lc + rx) data-
blocks (e.g., in Figure 3 2⃝, ⌊t/rx⌋ = 1, so the last blue unit
is sent.). Otherwise, it indicates that part of data-blocks in the
last group are transmitted, so each process sends lc+ t % rx

data-blocks (e.g., in Figure 3 6⃝, lgc = 11 % 27 = 11, t = 2,
⌊t/rx⌋ = 0, t%rx = 2, so only 2 data-blocks are sent).

Note, that D is the total number of transmitted data-blocks
by a process, and therefore the total amount of data transmitted
by a process is D×S bytes (S: the size of data-block in bytes).

B. Optimal Radix
As is evident from the four prepositions, both the total

amount of data-blocks transmitted (D) and the total number

Fig. 4: Mathematical simulation with varying process counts
(P ): K (orange) increases while D (blue) decreases with
increasing radices.

of communication rounds K depend on the radix (r) and the
total number of processes (P ). To understand the nature of this
dependence, we use the formulas obtained in the prepositions
to obtain values of both K and D for all possible combinations
of r and P . Due to space constrictions, we show plots for
P = 1,024, 2,048, 4,096 and 8,192, for each of which r is
swept from 0 to P (Figure 4).

Overall, we observe that when radix increases, K exhibits
an increasing trend, and D exhibits a decreasing trend. We
note two extreme cases of the communication spectrum. 1)
when r = 2, the algorithm has the smallest K (logP2 ) but the
largest D (w2w−1 (w = ⌈logP2 ⌉)). This results in low latency
and is thus suited for all-to-all with short messages. 2) When
r = P − 1, the algorithm has the largest K (≤ (P − 1)) but
the smallest D× (P −1). This configuration is suited for long
message sizes when communication is bound by bandwidth.
Popular MPI libraries implement the all-to-all collective using
these two extreme cases. The message size and process count
determine which case to choose at runtime.

While exploring the space between these two extreme cases,
interestingly, we observe a point of C1 discontinuity in both
the K and D curves, as depicted by the red circles in Fig-
ure 4, with the D curve being much more noticeable. Before
these points, D decreases, and K increases dramatically with
increasing values of r. After this discontinuous point, the rate
of decrease/increase of D/K becomes slow, decreasing at max
by 1 with every increasing value of r. We found this inflection
point occurs when r =

√
P , referred to as the optimal radix

in the paper.
Using our formulas, if r =

√
P , then the required number

of communication rounds K = w(r − 1) = 2
√
P − 2,

which is significantly less than (P − 1) rounds when r = P .



Fig. 5: Communication pattern for (a) TRA and (b) TRA2 with
r = 2 and P = 8, focusing on the first node only. There are
2 nodes (differentiated by colors) with 4 cores (processes) per
node. The colored arrows represent local inter-node comm,
and the black arrows represent inter-node global comm.

We demonstrate this difference by computing K for the two
radices at P = 16,384. K at r =

√
P is 254 which is ≊ 64×

less than the K (= 16,384) at r = P . On the other hand, D
at r =

√
P is 32,512 which is ≊ 3.5× smaller than the D

(= 114,688) at r = 2. In essence, the optimal radix strikes a
balance between the total number of communication rounds
(K) and total data transmitted (D)—significantly decreasing
K (e.g., 64×) while only reasonably increasing D (e.g., 3.5×).
The optimal radix finds a balance between the log base 2 and P
and can potentially result in optimal performance. We validate
this empirically in Section V-A.

We note that the optimal radix is deduced from the trends
of K and D, which are parameterized via P and r. Naturally,
the performance of all-to-all must also consider the size of
a data-block (S), which our formulas do not consider– we
discuss this limitation in Section VII.

IV. TWO-LAYER TUNABLE-RADIX ALL-TO-ALL (TRA2)

The computing environment of the modern HPC system
has multiple CPU cores per node with shared memory [25].
Data exchanges between cores on the same nodes translate
to a direct memory copy. Therefore, they are faster than data
exchanges between cores on different nodes, which require
data to move via the network [28], [20]. To exploit this extra
locality offered by the shared memory, we develop a new
algorithm called the two-layer (2) Tunable Radix All-to-all
algorithm (TRA2), that improves upon TRA.

TRA2 can be explained by three of its key characteristics:
(c1) reduced number of global inter-node data exchange
rounds; (c2) decoupled communication, with an initial set of
intra-node data exchange rounds that only require message
transfers that access the shared memory (and are thus much
faster), and a final set of inter-node data exchange rounds that

have message transfers between nodes; and (c3) an optimal
data exchange pattern where data packets with the same source
and destination ranks are bundled together. c1, c2, and c3 are
all closely linked, as the global inter-node data exchanges of
the otherwise initial rounds get pushed to the later (inter-
node) rounds, where they are bundled with data packets
with matching destination ranks, therefore reducing the total
number of global data exchanges and also decoupling the
communication rounds into intra-node and inter-node rounds.
Note that the initial intra-node rounds route the global inter-
node data packets to intermediate processes (within the node),
preparing them to be transferred during the inter-node rounds.

Example: We demonstrate c1, c2 and c3 in Figure 5. It
can be seen that TRA has 7 global inter-node data exchanges
(black arrows) compared to TRA2’s four. And, only the last
communication round of TRA2 involves inter-node data ex-
change compared to all three rounds of TRA. Looking more
closely, it can be seen, that the P3 → P4 (Figure 5(a) 1⃝)
inter-node data exchange in the first communication round
of TRA gets translated to P3 → P0 (Figure 5(b) 1⃝) intra-
node communication followed by P0 → P4 (Figure 5(b) 2⃝)
inter-node communication in TRA2. This makes it possible
to decouple intra-node from inter-node communication and
also reduces the total number of global inter-node exchanges.
Finally, we observe that the total number of data exchanges
remains unchanged, as the P0 → P4 (Figure 5(b) 1⃝) data
exchange of the intermediate data packet is grouped with the
other P0 → P4 (Figure 5(a) 2⃝) data exchange.

Intra-node and inter-node radices: With TRA2, we have the
additional flexibility to independently tune the radices of both
the intra-node and inter-node phases. The required number of
intra-node and inter-node rounds (K1 and K2) with radices
r1 and r2, respectively are (from Section III-A):

w1 = ⌈logQ
r1⌉, K1 = w1(r1 − 1)− ⌊r1 − P/rw1−1

1 ⌋
w2 = ⌈logNr2⌉, K2 = w2(r2 − 1)− ⌊r2 − P/rw2−1

2 ⌋

As intra-node communication involves all-to-all data ex-
changes only within a node, the communication round i
(0 ≤ i < K1) eliminates all global (inter-node) communi-
cations for those rounds. Additionally, if r = r1 = r2 and
logQ

r1 , logNr2 , and logPr are all integers (N : number of nodes,
Q: number of processes per node), then the TRA2 algorithm
requires the same number of communication rounds as TRA
i.e. (K = K1 + K2). For example, in Figure 5, there are
N = 2 nodes with Q = 4 cores each. Using a radix of 2, both
of these patterns require log82 = 3 rounds.

A. Implementation

Decoupling the communication rounds into intra-node and
inter-node data exchange phases is only possible when the
total number of processes (P ) an application runs on is an
integral multiple of Q (number of cores per node). This step
ensures that the intra-node communication perfectly aligns
with the inter-node communication by performing an exact



Fig. 6: Example of intra-node communication with r = 2,
P = 8, N = 2, and Q = 4 focusing on the first node. 0⃝
shows 2-representations of (i % Q) (i is index of a data-
block). In the initial rotation phase, each process moves up
(rank % Q) data blocks in every Q data block. 1⃝ represents
the rotation result. 1⃝ and 2⃝ are two communication rounds
in which the sent data blocks are shown in color. In 3⃝, every
process receives the needed data blocks but requires another
rotation phase to arrange them in ascending order.

fraction (1/Q) of the total all-to-all workload. While this is a
limitation of TRA2, one should note that users typically map
their applications to use all cores available on a node and,
hence, would typically not run into this limitation.

Intra-node communication phase is achieved by perform-
ing N (node count) concurrent all-to-all exchanges. Each of
these N groups involves Q processes. The total number of
processes is P = Q × N . The intra-node communication is
effectively achieved by performing initial and final rotations
independently for every group of Q data-blocks, followed by
data exchanges. To perform the local rotations, we re-index
the P logical data-blocks into groups of Q indices starting
from 0 to (Q− 1) (see Figure 6, second column of indices,
ranging from 00 to 11). The two intra-node groups can be seen
as separated by the horizontal red line. The rotation phase
is followed by K1 communication rounds, transmitting all
data-blocks to their appropriate destinations, the (node-local
data-blocks to the final target process and global inter-node
data-blocks to an intermediate process). As an optimization,
all data-blocks in different logical groups are merged and
transmitted simultaneously (e.g., P0 in Figure 6, transmits
all colored data-blocks all at once to P1 in the first round).
The formulaic description of the intra-node communication is
shown below:

1) Local shift of data-blocks (0 ≤ j ≤ Q) in each group
(0 ≤ i < N ): R[i × Q + j] = S[i × Q + (gp + j) % Q],
where gp = p % Q (p: rank id of process).

2) Communication steps in all groups: In each step k com-
prising x (0 ≤ x < w1) and z (1 ≤ z < r1), process p
sends to process (ni×Q+ (gp− z × rx +Q)%Q) all the
data-blocks R[i] whose xth bit of i in r-base is z, where
ni = ⌊p/Q⌋ is the id of each node. Process p receives data
from process (ni × Q + (gp + z × rx)%Q) into S, and
replaces R[i] (just sent) locally.

Fig. 7: An example of inter-node communication (r = 2 , P =
16, Q = 4), focusing on the first node. In this communication,
we treat all processes in each node as a super-process that
involves all-to-all communication. 0⃝ shows 2-representations
of indices of nodes. 1⃝ and 2⃝ are two communication rounds,
in which sent super-data-blocks are colored. 3⃝ shows the state
after communication but requires another rotation phase.

3) Local inverse shift of data-blocks from R to S:
S[i×Q+ j] = R[i×Q+ (gp− j +Q) % Q].

In the inter-node communication phase, groups of Q pro-
cesses operate as a virtual process, called a super-process. This
communication is analogous to intra-node communication (see
Figure 6), with the exception that the communication occurs
between super-processes rather than processes. For example,
in Figure 7, every super-process comprises four processes. The
number of super-processes is N = P/Q. Typically, Q is the
actual number of physical cores on a node. Similarly, a super-
block consists of Q2 data-blocks that are always transferred
to the same destination super-process. Therefore, the number
of super-blocks is the same as that of super-process. For
example, in Figure 7, every 4 × 4 data-blocks constitute a
super-block (e.g., the first 16 blue data-blocks that need to be
sent to the next super-process) (differentiated by red lines).
To perform the two rotation phases, the indices of super-
blocks are encoded into r2 representation instead of indices of
data-blocks. For example, in Figure 7, the four super-blocks
are encoded as 00, 01, 10, 11. The communication phase
follows the Q-port model in which every Q point-to-point
data exchange is delivered simultaneously. Each process in a
super-process serves as a communication port, which transmits
a 1/Q message to the corresponding process in another super-
process. In Figure 7, for instance, super-process-0 (containing
P0, P1, P2, and P3) must send data to super-process-1
(containing P4, P5, P6, and P7) in the first communication
round (transferring the two blue colored super-blocks). In this
case, four processes in super-process-0 can simultaneously
send four direct messages to four processes in super-process-1
(P0 → P4, P1 → P5, P2 → P6, P3 → P7). The formulaic



Fig. 8: Performance analysis of TRA on Theta with varying process count (P ), size per data-block (S), and radix (r). A red
circle highlights the best r with optimal performance in each figure, while a green circle indicates r =

√
P when it is not

equal to the best radix. (⌈
√
2048⌉ = 46,

√
4096 = 64, ⌈

√
8192⌉ = 91,

√
16384 = 128).

description of inter-node communication is as follows:
1) Local shift of data-blocks for all groups (0 ≤ i < N ):

memcpy(R[(ni + i)%N × Q], S[i × Q], Q), where ni =
⌊p/Q⌋ is the id of each node.

2) Communication steps across groups: In each step k com-
prising x (0 ≤ x < w2) and z (1 ≤ z < r2), process p
sends to process ((ni×Q+(gp−z×rx+N)) % N ) all the
data-blocks R[i] whose xth bit of i in r-base is z, where
gp = p % Q (p: rank id of process). Process p receives
data from process (ni×Q+ (gp + z × rx) % N) into S,
and replaces R[i] (just sent) locally.

3) Local inverse shift of data-blocks: memcpy (R[(ni − i +
N)%N ×Q], R[i×Q], Q) (0 ≤ i < N ).

V. EVALUATION

We conduct a thorough evaluation of our algorithms using
micro-benchmarks on the Theta supercomputer of Argonne
National Laboratory (ANL) [32]. Theta is a Cray machine with
a peak performance of 11.69 petaflops, 4,392 compute nodes
with 64 cores per node. To show the generalizability of our
algorithm, we also conducted a handful of experiments on the
Polaris supercomputer at ALCF (Cray MPICH 8.1.16) [33].

Polaris is a 44 petaflop HPC system with 560 nodes each
with 32 AMD CPU cores and 4 A100 GPUs. Both systems
use an Aries interconnect with Dragonfly topology.

To demonstrate the efficacy of TRA and TRA2, we compare
their performance against vendor-optimized MPI_Alltoall
in Cray MPI, which is a proprietary, closed-source imple-
mentation from Cray based on the MPICH distribution [14].
In Section III-A, we demonstrated that the performance of all-
to-all is influenced by two parameters: process count (P ) and
radix (r). We, therefore, perform a set of experiments in which
we vary these two parameters for both TRA (Section V-A)
and TRA2 (Section V-B). In addition to these two parame-
ters, we also explore the impact of the size of data-block
(S). We deduced the optimal radix for both TRA and TRA2
from those experiments. Finally, we conducted comparative
experiments of TRA and TRA2 (using their optimal radices)
against MPI_Alltoall (Section V-C). All our experiments
were performed for a minimum of 100 iterations, and we
reported the meantime and the standard deviations (using error
bars). We used the MPI-everywhere programming model that
maps one rank per core (e.g., we have 64/32 processes per
node on Theta/Polaris).



Fig. 9: Performance analysis of TRA2 on Theta (orange line: intra-node comm., purple line: inter-node comm.) with varying
process count (P ), size per data-block (S), and radix (r). The best r1 and r2 for intra-node comm and inter-node comm with
optimal performance are highlighted by red circles.

A. Performance analysis of TRA
To understand the performance of TRA, we conducted

experiments that varied P from 512 to 16,384, S from 16 to
8,192 bytes, and r from 2 to P/2. Due to space constraints,
we only present a subset of the results in Figure 8. For each
experiment (graph), we fixed P and S while varying r. In each
graph, we highlight the most optimal performance with a red
circle while highlighting the performance at r =

√
P with a

green circle. From the results shown in Figure 8, we make
the key observation that r ≈

√
P consistently outperforms

other radices for all process counts (P ) for large-sized data-
blocks (S ≥ 512) (matching the formulaic deduction of Sec-
tion III-B). This can be seen for all graphs below the dashed
line in Figure 8, where the optimal radix (red circle) overlaps
with

√
P (green circle). For example, with P = 2,048 and

S = 128, r = 2 and r = 46 take 16.17 and 7.699 milliseconds,
respectively; r = 46 is more than 2× faster than r = 2
(Figure 8(b)).

We also make the observation that for relatively small-sized
data blocks, the optimal radix is many times smaller than√
P . For example, see the graphs above the dashed line. One

important thing to note is that the commonly used radix of
2 does not yield peak performance in these cases, and the
optimal radix is typically close to

√
P . Overall, this trend can

be explained by the fact that small-sized data blocks benefit
more from the latency benefits (achieved with smaller radices)
than large data blocks.

B. Performance analysis of TRA2
Similar to Section V-A, we fixed P and S while varying

radices r1 (intra-node comm) and r2 (inter-node comm) in
each experiment, as shown in Figure 9. From the results, we
observe that (1) the intra-node communication follows the rule

of TRA that works well with r1 =
√
Q (Q: process count/node)

(latency-bound); (2) the inter-node communication, on the
other hand, follows the spread-out like pattern that works well
with r2 = N (N : the number of nodes) (bandwidth-bound).

For most runs, the most optimal r1 is 8 (=
√
64). However,

we also observe that the overall performance of TRA2 is
dominated by inter-node communication This relatively lower
cost of the intra-node communication further demonstrates the
efficacy of TRA2, as these intra-node exchange rounds would
otherwise be part of expensive global communication rounds
with TRA.

Interestingly, the inter-node communication (purple lines)
does not yield optimal performance with r2 =

√
P . Our

experiments show that r2 = N(P/Q) outperforms other
radices in most cases. For example, the optimal radix for
P = 2,048 and S = 256 is 34 (2048/64 = 32) ( Figure 9(c)),
and it is 128 (8192/64 = 128) for P = 8,192 and S = 1,024
( Figure 9(l)). This is expected since the inter-node rounds
of TRA2 perform aggregated data exchanges only at the node
level – with all processes within a node exchanging data with
all processes on some other node. Since processes on a node
share bandwidth, it is easier to saturate the network– making it
bandwidth-bound. For inter-node communication, r2 = P/Q,
which corresponds to the bandwidth-bound, linear time spread-
out communication pattern, guarantees a minimum amount of
data transmitted and yields the most optimal performance.

C. Comparison with vendor-optimized all-to-all
In this section, we compared the performance of TRA

and TRA2 against the vendor-optimized MPI_Alltoall. We
vary S from 16 to 4,096 bytes and P from 512 to 16,384. We
use the optimal radix of r =

√
P for TRA and r1 =

√
Q

(Q: number of processes per node) and r2 = N (N : number



Fig. 10: Performance comparison of TRA with optimal radix (
√
P ), TRA2 with optimal radices (r1 = Q (intra), r2 = N

(inter)), and MPI_Alltoall with varying process count (P ), size per data-block (S) (on Theta).

Fig. 11: Performance analysis of TRA on Polaris with varying
process count (P ), size per data-block (S), and radix (r). A
red circle highlights the best r with optimal performance in
each figure, while a green circle indicates r =

√
P when it

is not equal to the best radix. (⌈
√
512⌉ = 22,

√
1024 = 32,

⌈
√
2048⌉ = 46).

of nodes) for TRA2. The results are shown in Figure 10. We
can observe that both TRA and TRA2 consistently outperform
MPI_Alltoall (pink lines) for almost all P and S. For ex-
ample, when P = 2,048, TRA and TRA2 are 3.98x and 5.02x
faster than MPI_Alltoall at S = 32 bytes (Figure 10(c)),
respectively. We also observe that TRA2 (green lines) beats
TRA (blue lines) for almost all P s and Ss. These experiments
demonstrate our algorithms’ efficacy and strategy to pick the
optimal radices for both TRA and TRA2. Any application that

relies on all-to-all communication is bound to benefit from our
approach.

Fig. 12: Performance comparison of TRA with optimal radix
(r =

√
P ), TRA2 with optimal radices (r1 =

√
Q (intra),

r2 = N (inter)), and MPI_Alltoall on Polaris.

D. Evaluation on Polaris

To show the overall generalizability of our approach, we
also ran all experiments on the Polaris supercomputer at ANL.
Due to space limitations, we report the performance of a
handful of experiments that demonstrated key trends. In Fig-
ure 11, we show the performance of TRA as a function of the
radix. As expected, we observe an optimal performance at

√
P

for most cases and also see improved performance compared
to the vendor-optimized implementation of MPI_Alltoall.
In Figure 12, we compare the performance of TRA and TRA2
against MPI_Alltoall, in a weak scaling mode. Here, also
both TRA and TRA2 outperform MPI_Alltoall. However,
unlike Theta, the performance difference between TRA and
TRA2 is relatively less pronounced.



Fig. 13: Comparison results with different sizes of complex
DFT (N ). The darker part (at the bottom) is the all-to-all time
and the lighter part (at the top) is the compute time.

VI. APPLICATION: FAST FOURIER TRANSFORM (FFT)

In this section, we apply and evaluate both the TRA and
TRA2 algorithms using a one-dimensional parallel FFT (Fast
Fourier transform) application built on top of the FFTW-3 [34]
library. Three-dimensional fast Fourier transform computation
(FFT) is an important component of many scientific appli-
cations [35] ranging from fluid dynamics to astrophysics and
molecular dynamics. FFTW [15] is a widely used open-source
library that computes the discrete Fourier transform (DFT) in
parallel using MPI. The main FFT algorithm used in FFTW
is the Cooley-Tukey algorithm [36], which is a classic DFT
computing algorithm that reduces the time complexity from
O(N2) to O(NlogN) for N -sized data.

FFTW relies extensively on all-to-all exchanges to perform
matrix transpose operations. The data type of a complex DFT
in FFTW-3 is fftw_complex, which contains two doubles,
corresponding to the real and imaginary parts of a complex
number. This application performs three matrix transposes,
which account for a significant portion of the runtime. The
FFTW-3 library’s default strategy is to use MPI_Alltoall
to perform the transpose tasks – referred to as Default-Strategy
(green bars in Figure 13). To compare against the Default-
Strategy, we implemented all-to-all using TRA and TRA2 with
their optimal radices – referred to as TRA-Strategy and TRA2-
Strategy respectively (orange and pink bars in Figure 13).

Figure 13 illustrates the comparison results of the three
strategies with varying process count (P ) and size of complex
DFT (N ) on both Theta and Polaris. In each sub-figure, we
plot both the overhead of the sum of three transpose operations
(bottom solid parts of stacked bars) and the entire application
(whole bars). In Figure 13(a)(c), with N = P 2, each process
is assigned a P complex DFT, with each process exchanging
one complex DFT with every other process (2 doubles = 16

bytes). Similarly, each process exchanges 1,024 bytes with
every other process in Figure 13(b)(d), where N = P 2 × 64.
We make the observation that, on both Polaris and Theta, both
TRA and TRA2 outperform the Default-Strategy at all scales.
Furthermore, on Polaris, TRA2 outperforms TRA in 10 out of
12 process counts, and on Theta in 4 out of the 8 runs.

VII. LIMITATIONS

This paper makes contributions to better understanding
(and reason about) the entire range of (configurable) all-to-
all communication patterns and correspondingly demonstrates
a span of achievable performances. This work is also the
first step in developing an automated method to estimate the
optimal radix for both TRA and TRA2. However, the work
has one shortcoming, while we can deduce an optimal radix
(r =

√
P for TRA and r1 =

√
Q and r2 = P/Q for TRA2),

based on the formulas derived in Section III-A, for K (total
communication rounds) and D (total number of transmitted
blocks) parameterized via P (process count) and r (radix);
the performance of all-to-all also naturally depends on the
workload which must also factor in the size of a data-block
(S) – which currently does not figure in the formulas.

While we can create a rough bound for performance based
on S for TRA. For example, from Figure 8, we observe that for
larger block sizes (≥ 128 bytes) optimal radix is ≈

√
P , and

for smaller block sizes the optimal radix is typically ≤
√
P .

Such bounds are difficult to obtain for TRA2. Moreover, even
for TRA, this bound may shift on other HPC systems (as
it does for Polaris). It is therefore essential to construct a
data-driven performance model [37], [38] that is guided by
both the theoretical underpinnings of this work along with
a wide range of empirical exploration involving multiple
HPC systems and the entire parameter space including S, P ,
r, and Q. Machine learning could be one of the potential
techniques for building this model. The performance model
could potentially also present a more robust way of choosing
between TRA and TRA2, as automatically selecting the correct
algorithm continues to be a challenging task (as seen in
the application section). Therefore, to obtain a more robust
performance model, this high-dimensional parametric space
needs to be rigorously explored.

VIII. CONCLUSIONS

MPI collective operations are commonly used in large
distributed applications and are a principal cause of scal-
ability bottlenecks [11]. This paper focuses on improv-
ing the performance of uniform all-to-all communication
(MPI_Alltoall). In the process, we developed parame-
terized formulas to compute the total number of commu-
nication rounds (K) and data blocks transferred (D) as a
function of the radix (r) and process count (P ) and used
the formulas to derive the optimal radix for both TRA and
TRA2. We developed formulas to calculate the total number
of communication rounds (K) and data-blocks transferred (D)
for various configurations, which can be used to pre-analyze
communication performance for any given P , S, and r. We



demonstrated a range of configurations where our algorithms
TRA and TRA2 outperformed the vendor-optimized implemen-
tations on two HPC systems. We found that radix r = ⌈

√
P ⌉

is the most effective configuration in most cases for the TRA
algorithm. Our techniques can potentially improve a range
of applications that rely on uniform all-to-all communication.
Our open-source implementations can be easily adopted by
applications and vendors, providing consistent parameters as
MPI_Alltoall. Our improvements should also be directly
applicable, with some caveats, to MPI_Alltoallv where
message sizes are permitted to vary.
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