
Adaptive Spatially Aware I/O for Multiresolution
Particle Data Layouts

Will Usher∗‖, Xuan Huang∗, Steve Petruzza∗†, Sidharth Kumar‡, Stuart R. Slattery§, Sam T. Reeve¶,
Feng Wang∗, Chris R. Johnson∗ and Valerio Pascucci∗

∗SCI Institute, University of Utah. †Utah State University. ‡University of Alabama, Birmingham.
§Oak Ridge National Laboratory. ¶Lawrence Livermore National Laboratory. ‖will@sci.utah.edu

Abstract—Large-scale simulations on nonuniform particle dis-
tributions that evolve over time are widely used in cosmology,
molecular dynamics, and engineering. Such data are often saved
in an unstructured format that neither preserves spatial locality
nor provides metadata for accelerating spatial or attribute subset
queries, leading to poor performance of visualization tasks.
Furthermore, the parallel I/O strategy used typically writes a
file per process or a single shared file, neither of which is
portable or scalable across different HPC systems. We present a
portable technique for scalable, spatially aware adaptive aggre-
gation that preserves spatial locality in the output. We evaluate
our approach on two supercomputers, Stampede2 and Summit,
and demonstrate that it outperforms prior approaches at scale,
achieving up to 2.5× faster writes and reads for nonuniform
distributions. Furthermore, the layout written by our method is
directly suitable for visual analytics, supporting low-latency reads
and attribute-based filtering with little overhead.

Index Terms—Parallel I/O, Load Balancing

I. INTRODUCTION

The continuing growth in computational power available on
high-performance computing systems has enabled scientists
to perform increasingly detailed simulations, modeling phys-
ical phenomena with greater accuracy. As the resolution of
simulations increases, a proportionally larger amount of data
is produced. This growth in simulation size, combined with
the growing gap between FLOPS and I/O bandwidth on HPC
systems, poses a significant challenge to existing I/O strategies.
Prior work has proposed strategies to address these challenges
for uniform grids [1]–[5] and AMR [6]. However, relatively
little work has focused on particle data.

Particles are widely used in the simulation community
to model dynamic and nonuniformly distributed media [7]–
[11], due to their ability to handle large dynamic ranges and
contact discontinuities often found in cosmology, molecular
dynamics (MD), or free-surface and disperse multiphase fluid
dynamics. Particle populations in these simulations often span
large ranges of space, with localized groups representing, e.g.,
clustered galactic masses, atomic features, or fluid droplets.
Although using particles can greatly facilitate the ability
to perform computations when modeling such phenomena,
their unstructured nature and nonuniform distributions pose
additional challenges to the I/O system.

In algorithms where particles represent the primary unit of
computational work, such as classical MD, care is taken to peri-
odically rebalance them via geometric methods, e.g., recursive
coordinate bisectioning, resulting in a correspondingly balanced

I/O workload. However, particles often do not represent the
primary unit of work, or a significant fraction of work is shared
by a different algorithm. Examples of such simulations include
disperse multiphase Lagrangian-Eulerian techniques [12] and
partitioned multiphysics methods that couple particle and grid-
based methods [13]. In such simulations, particles remain
an important part of the computation and analysis, but move
dynamically through the domain, imbalancing the I/O workload
as the simulation evolves.

To portably achieve high-bandwidth writes, current parallel
I/O libraries use two-phase I/O [6], [14], [15] or subfiling [16]–
[18]. Two-phase I/O approaches transfer data across the network
to a selected subset of aggregator ranks that are responsible
for writing the data to disk. Subfiling is a similar technique
that controls the total number of output files by combining
data from multiple ranks. Both methods reduce I/O contention
and overhead to achieve high-bandwidth writes. However,
neither approach ensures the data output to each file contains
a spatially coherent subregion. Thus, postprocess visualization
and analysis tasks, which often work on spatial subregions,
may be forced to perform suboptimal reads on the data.

Visualization tasks are often performed on single work-
stations or small clusters, with significantly less compute
and memory capability than was used to run the simulation.
Data access is driven by user exploration, often involving
spatial or attribute subset queries [17], [19]–[25]. Support
for low-latency multiresolution reads and Level of Detail
(LOD) are also desirable [19]–[21] to enable visualization
on low-power devices, or while additional data is loaded.
However, simulations typically output data as flat arrays without
the metadata or hierarchies required to support such queries,
requiring a lengthy postprocess conversion step to transform
the data to the visualization format.

Kumar et al. proposed spatially aware two-phase I/O strate-
gies for uniform grids [5] and AMR [6], capable of outputting
the data directly in a layout suited to visualization [26], without
sacrificing parallel write or read performance. Kumar et al.
recently extended this approach to particle data [27]; however,
their aggregation strategy is based on an adjustable uniform
grid and assumes a uniform density distribution of particles. In
contrast, our approach supports arbitrary nonuniform particle
distributions with varying density or sparsity that often occur
in simulations.

We present a scalable technique for spatially aware adaptive
aggregation of particle data for two-phase I/O. We group ranks

for aggregation using a k-d tree decomposition of the domain
to assign a similar number of particles to each aggregator. On
each aggregator, we construct a low-overhead multiresolution
layout on the particles that is directly suitable for postprocess
visualization and analysis. We demonstrate the scalability and
portability of our I/O strategy on uniform and nonuniform
particle distributions on two supercomputers, and evaluate its
suitability for low-latency multiresolution visualization queries.
Our contributions are:
• A spatially adaptive approach for parallel I/O of mul-

tiresolution particle data layouts supporting arbitrary
nonuniform particle distributions;

• A novel combination of k-d trees and bitmap indexing for
multiresolution attribute and spatial queries on particle
data;

• In situ construction of the proposed data structure during
spatially adaptive I/O with little overhead; and

• Empirical scalability and portability studies on Stampede2
and Summit up to 24k and 43k cores, respectively.

II. RELATED WORK

We first review relevant work on parallel I/O, with a
focus on particle data (Section II-A), and then briefly discuss
visualization- and analysis-focused data layouts (Section II-B).

A. Parallel I/O

Organizing and efficiently accessing large-scale grid-based
structured data has always been the aim of several high-level I/O
libraries. The most prominent examples are Parallel HDF5 [1],
Parallel NetCDF [3] (PnetCDF), and ADIOS [4]. These libraries
typically store data in row-major blocks. Although HDF5,
PnetCDF, and ADIOS are general purpose, robust, and achieve
high-write bandwidth, they are less suited to the read access
patterns required for interactive, exploratory analysis of large
data sets. Parallel IDX (PIDX) [6] is an I/O library that writes
data directly in a cache-oblivious, multiresolution data layout
using a spatially aware two-phase I/O strategy. The layout
output by PIDX supports low-latency multiresolution reads,
making it amenable to interactive exploration of large data sets,
even on low-power devices.

Although these libraries are effective at dealing with struc-
tured data, they provide limited support for particle data,
typically treating it as a set of 1D arrays (e.g., [16]). Common
approaches for I/O of particle data use either a single shared
file [7], [9], [16], [17], [28] or a file per-process [8], [29]. Such
approaches can work well on a single HPC resource or provide
tolerable performance at some scales, but are known to struggle
with large core counts and portability. Recent work has begun
to integrate subfiling [10], [18] to address these limitations in
the context of particle data. However, as with approaches used
for structured data, these techniques work without knowledge
of the underlying spatial domain and do not output data in a
visualization- or analysis-tailored layout.

Kumar et al. [27] recently presented a two-phase I/O strategy
for particle data that aggregates the data into spatially coherent
groups. The proposed technique demonstrated the viability of

spatially aware two-phase I/O for particle data; however, it
aggregates data using an adjustable uniform grid (AUG) and
does not adapt to arbitrary nonuniform particle distributions.
The method supports adjusting the grid to fit a rectilinear
subdomain if the subdomain contains the entire set of particles.
However, the particle distribution within the subdomain is
assumed to be uniform. Although the paper suggests that more
dynamic aggregation approaches can address this limitation,
only the AUG is presented and evaluated, and such dynamic
strategies are left for future work. In contrast, we build a k-d
tree [30] over the ranks’ spatial bounds to construct aggregation
groups with similar numbers of particles. Our k-d tree-based
aggregator construction can adapt to arbitrary nonuniform and
time-varying distributions of particles to achieve load-balanced
high-bandwidth writes on real-world particle distributions.
We demonstrate 2− 2.5× faster writes and 3× faster reads
compared to AUG [27] on nonuniform and time-varying particle
distributions.

B. Visualization- and Analysis-Focused Layouts

Tree hierarchies have been widely used to achieve progres-
sive multiresolution rendering of large-scale particle data [19],
[20], [22], or to accelerate nearest neighbor [30], [31] and
region queries [30], [32]. In cosmology, effective octree [20],
k-d tree [22], and cluster hierarchy [19] approaches have been
demonstrated for multiresolution rendering. A concern with
these approaches is the additional memory required to store
the LOD representations of the data. Adding representative
particles [19], [20] or duplicating particles [22] introduces
significant memory overhead. Prior work has compensated for
this overhead by quantizing and compressing the data [19],
[20] or discarding subsets of it [22].

A large body of work has explored data layouts focused
on general analysis queries, treating the particles more akin
to entries in a database. Simulation data follows a write-once
read-many usage model, for which bitmap indexing has been
demonstrated to be effective for accelerating queries [17],
[23]–[25], [33]–[35]. However, bitmap indices can require
a significant amount of storage, from 30% [35] to 66% [33]
of the original data size, and in some cases approaching the
original data size [17], [36].

As the simulation typically does not write the data in the
layout used for analytics, a postprocess conversion must be
performed. The cost of this process grows with the data size,
and can take from a few minutes [17] or hours [20], [33]
to days [21], depending on the hardware used and layout
being built. To alleviate this postprocess conversion cost, prior
work has constructed the visualization hierarchy [22] or bitmap
indices [35], [37] in situ. However, the simulation may still need
to write its own layout for checkpoint restart reads, significantly
increasing the total data volume written.

Our proposed layout builds on ideas from both visualization-
and analysis-focused layouts. We provide LOD by reordering
particles and leverage spatial coherence to provide bitmap
indexing-based attribute filtering with little memory overhead.
The layout is built during I/O, eliminating the need for

A

B

C

A

6

0

2 4

B

C

6

0

2

4
A

B

C

(a) Adaptive Aggregation Tree Construction and Aggregator Assignment

Gather particle counts to rank 0

Adaptive Aggregation Tree Leaves

Aggregator Leaf Assignment

(b) Data Transfer (c) Data Layout Build and Write (d) Top-Level Metadata Construction

Fig. 1: An overview of our adaptive two-phase I/O pipeline. (a) Given the number of particles on each rank, rank 0 constructs the Aggregation Tree to create
leaves with similar numbers of particles. Each leaf is assigned to a rank responsible for aggregating the data and writing it to disk. (b) Each rank sends its data
to its aggregator. (c) Each aggregator constructs our multiresolution data layout and writes it to disk. (d) The aggregators send the local value ranges and root
node bitmaps for each attribute to rank 0, which populates the Aggregation Tree with the bitmaps and writes it out.

postprocess conversion, and is suitable for high-bandwidth
reads, allowing a single copy of the data to be written.

III. SPATIALLY AWARE ADAPTIVE AGGREGATION FOR
PROGRESSIVE MULTIRESOLUTION PARTICLE LAYOUTS

To balance the I/O workload as particles move through or
are injected into the domain, we employ a k-d tree partitioning
computed over the ranks’ spatial bounds. Each leaf node in
this tree contains a similar number of particles and corresponds
to a set of ranks to aggregate together and output to a file. In
contrast to the adjustable uniform grid approach of Kumar et
al. [27], by building a k-d tree over the ranks to balance the
particle distribution among the leaves (i.e., the subfiles), we are
better able to adapt to the particle distribution to improve load
balance and I/O performance. An overview of our two-phase
I/O pipeline is shown in Figure 1.

Each write proceeds as follows: All ranks send their particle
counts and domain bounds to rank 0, which constructs the
“Aggregation Tree” (Figure 1a, Section III-A). Each leaf in
the tree contains a set of ranks with a similar total number of
particles and is assigned to an aggregator rank responsible for
receiving the data in the leaf and writing it to disk. Each rank
sends its local data to the aggregator for the leaf containing
it (Figure 1b, Section III-B). After receiving the particles
for the leaf, the aggregator constructs and writes out our
multiresolution data layout (Figure 1c, Section III-C). We then
populate a top-level metadata file on rank 0 containing the
Aggregation Tree and references to the leaf files written by the
aggregators (Figure 1d, Section III-D). We provide a C API to
ease integration of our proposed I/O strategy into simulations
written in a range of programming languages. The API follows
an array-based attribute storage model similar to HDF5 [1],
ADIOS [4], and Silo [38].

A. Constructing the Adaptive Aggregation Tree

To construct the Aggregation Tree (Figure 1a), we gather
each rank’s bounds in the simulation domain and the number
of particles it owns on rank 0. Rank 0 then performs a modified
k-d tree build to construct a set of leaves containing similar
numbers of particles. As the actual particle distributions within
each rank are unknown, we restrict the tree to select split
positions that lie on rank boundaries. By not splitting a rank’s
data between multiple aggregators, we also reduce the data
processing and transfers that take place during aggregation.

When building the tree, we want to find a split position that
partitions the ranks such that a similar number of particles fall
into each subtree. To do so, we select the longest axis of the
aggregate bounds of the current set of ranks that have particles
and find a set of candidate split positions to test. The candidate
splits are the unique edges of each rank’s bounds along the
chosen splitting axis. For each candidate split, we determine
which ranks would fall into the left and right subtrees and
compute the corresponding number of particles in each subtree,
nl and nr respectively. The cost of the split measures how
uneven the partitioning is, c = |0.5−nl/(nl +nr)|. We test each
candidate to find the one with the minimum cost, and repeat
this process to construct the subtrees. The tree construction is
parallelized top-down using Intel TBB. A task is spawned to
construct the right subtree, while the current thread proceeds
with the left. Users can also optionally configure the tree to
find and use the best split across all spatial axes.

A leaf node is created when the data contained within the
current node falls below a user-specified target file size. Each
leaf in the tree corresponds to a file that will be written to
disk, containing the data of the ranks within the leaf’s bounds.
The target size determines the size and number of the output
files and the amount of network traffic during the aggregation
phase. Lower sizes output more smaller files with less data
transferred; larger sizes output fewer larger files with more
data transferred. The best size varies across HPC systems and
scales and is exposed as a tunable parameter for portability.

To avoid forcing the creation of extremely imbalanced leaves
to satisfy the target file size, the tree can be configured to allow
the creation of “overfull” leaf nodes. An overfull leaf is created
when the minimum split cost exceeds a user-set threshold, and
the current data size is within a user-set factor of the target size,
balancing between avoiding bad splits and creating excessively
large files. The target size can also be exceeded if a single
rank exceeds it, as data within a rank is not partitioned.

To ensure even utilization of the network, we distribute the
assignment of leaves to aggregators evenly across the rank
space [39]. Although this assignment does not ensure that each
aggregator is contained in its assigned leaf, it provides better
work distribution for the aggregation stage. For example, ranks
on the same node likely operate on neighboring regions of the
domain. If this region is densely populated with particles, more
leaf nodes will be created and assigned to be aggregated by
ranks on the node, leading to oversubscription. Similarly, nodes

Memory
Address

0

Top-Level Tree
Bitmap Dictionary

0 1

2 3

4 5

6 7

Inner Node Bitmap IDs
(per-attribute, AoS)

[0, 1, 0], [0, 2, 0], [1, 3, 0]

Leaf Nodes
(Treelet Addresses)

a×4096 b×4096

c×4096 d×4096

k-d Tree Inner Nodes

a×4096

Treelet
k-d Tree Nodes Node Bitmap IDs

(per-attribute, AoS)
[0, 2, 0],

[1, 2, 1], [2, 4, 3], [3, 6, 2],
[7, 2, 3], [7, 4, 3], [7, 6, 3]

Particle Positions (AoS)

[x, y, z,...]

Attributes (SoA)

[pressure...]
[temperature...]
[type...]

0 m n o p

a×4096 q r s t

Fig. 2: The BAT layout is organized on disk for fast spatial and attribute query
traversal and LOD via memory mapping. The top-level tree is stored at the
start of the file in two parts. The first section contains the k-d tree inner nodes,
followed by the leaf nodes. The leaf nodes are addresses of the corresponding
treelet in the file. The shared bitmap dictionary is also stored at the start of the
file, along with the IDs of the top-level tree’s inner node bitmaps. Each treelet
is aligned to a 4KB page boundary for fast access via memory mapping. Each
treelet consists of the k-d tree and the bitmap IDs for each node, followed by
the particle data.

with ranks in less populated regions would be underutilized.
Rank 0 scatters to each rank its assigned aggregator ID and

the number of particles that it will receive if it is an aggregator,
or zero if not. Each aggregator is also sent a list of the ranks
that it is assigned to receive data from and the number of
particles on each assigned rank.

B. Data Transfer to Aggregators

Each aggregator allocates buffers to store the particles it will
receive and their attributes, and posts nonblocking receives for
each rank in its leaf. Each rank sends its data (if any) to its
assigned aggregator by initiating nonblocking sends (Figure 1b).
If a rank does not have particles, the data transfer is skipped.
We do not create subcommunicators for leaf aggregation groups
since the rank assigned to receive data for the leaf may not be
contained in the leaf, and thus must simultaneously participate
in a different, disjoint group.

C. Construction of Our Multiresolution Data Layout

After receiving the particles on each aggregator, we construct
our data layout, the Binned Attribute Tree (BAT), to support
spatial and progressive multiresolution reads (Figure 1c).
To support multiresolution reads, each inner node in the
tree stores a fixed number of LOD particles to provide a
coarse representation of the subtree without additional memory
overhead. Attribute queries are accelerated by storing bitmap
indices at each node. We build the tree in two parallel steps: a
data-parallel bottom-up build that constructs a shallow k-d tree
(Section III-C1) and top-down builds of treelets in each leaf of
the shallow tree (Section III-C2). These steps are executed in
parallel and are further parallelized internally. We then compact
the tree to a memory layout optimized for fast multiresolution
reads (Section III-C3, Figure 2). After compaction, the tree
can be used for in transit visualization and analysis on the
aggregators before or instead of being written to disk. Each
aggregator writes its tree to an independent file.

1) Bottom-Up Shallow Tree Construction: We use Karras’s
parallel bottom-up k-d tree construction algorithm [40] to build
the tree in parallel, with a small modification to the input set to
construct a shallow tree. Karras’s algorithm works as follows:

The Morton code of each particle is computed and placed into a
sorted array, forming the leaf nodes of the tree. The inner nodes
of the tree are computed in parallel by finding the common bit
prefixes of the Morton codes, producing a radix tree over the
points. The resulting radix tree can be directly interpreted as a
k-d tree, where each inner node’s Morton code prefix indicates
the split axis and position. The construction is fast and can be
performed entirely in parallel on CPUs and GPUs. However,
the tree stores a single particle per-leaf, which is not suited to
our goal of multiresolution reads and low memory overhead.

To build a shallow tree, we use a subprefix of each particles’
Morton code and merge shared subprefixes to produce a smaller
set of codes. The build process then proceeds as described
above. The leaves of the shallow tree correspond to rectangular
regions containing large numbers of particles. We have found
that a 12-bit subprefix provides satisfactory results with respect
to the number of leaves and particles within each. We construct
a treelet within each leaf of the shallow tree.

2) Parallel Treelet Construction: The treelet builds for each
leaf in the shallow tree are independent and run in parallel.
For each leaf, we find the set of particles sharing the leaf’s
subprefix using a binary search over the sorted set of Morton
codes and construct a median split k-d tree over them.

To support multiresolution reads of the data, we store a fixed
number of LOD particles at each treelet inner node. When
creating an inner node, we perform a stratified sampling of the
input particles to select the LOD particles and set them aside
for the inner node. By taking subsets of particles for LOD, we
avoid duplicating them or introducing new representative ones,
avoiding additional memory overhead.

To support attribute-based filtering, each leaf node computes
a 32-bit bitmap index for each attribute of its contained particles,
which are propagated back up the treelet and, eventually, the
shallow tree. Inner nodes compute their bitmaps by merging
those of their children with those of their LOD particles.

In contrast to standard bitmap indexing approaches, where
the size of the bitmap can vary as needed at the cost of
memory [23]–[25], we fix the bitmaps to be 32 bits. Although
restricting the bitmap size reduces their accuracy when filtering
queries, it provides two key benefits to reduce memory
overhead. First, the bitmaps occupy a fixed and predictable
amount of storage. Second, we can build a dictionary of the
unique bitmaps in the data set and replace bitmaps in the tree
with smaller indices into this dictionary to reduce overhead.

Besides this 32 bit restriction, we use a standard binning
strategy to compute the bitmaps [23], where each bit corre-
sponds to a bin covering 1/32 of the attribute’s range. To
avoid bins becoming so large as to not provide useful filtering,
the bitmaps are computed relative to the local attribute range
on the aggregator. As simulation attributes are often spatially
correlated, the local range is likely a subset of the global range,
allowing for finer bin sizes. Bitmaps can be combined using a
bitwise OR and tested for overlap using a bitwise AND, making
such operations fast to perform.

3) Tree Compaction: After the build steps have completed,
we compact the tree into a single buffer that can be efficiently

6

0

2

4

A

6

0

2 4

B

C

(a) Assign Read Aggregators (c) Data Transfer

B

C

A

(b) Find Overlapped Leaf IDs

Fig. 3: An overview of our parallel read pipeline. (a) All ranks read the
Aggregation Tree metadata, and a subset is selected to act as read aggregators.
(b) Each rank determines which leaves it overlaps, and (c) requests data from
the aggregator(s) assigned to the leaf file(s).

written to disk and structure data in the buffer to support fast
reads via memory mapping (Figure 2). The bitmaps of each
treelet are merged into a dictionary of unique bitmaps and
replaced with 16-bit IDs into this dictionary to further reduce
memory use. Using 16-bit IDs limits the dictionary size to
65k bitmaps; however, we have found this to be more than
sufficient in practice.

At the start of the file, we store the shallow tree as a linear
k-d tree. The bitmap dictionary is stored with the shallow
tree, since it will be accessed frequently during traversal. The
leaf nodes of the shallow tree are replaced with offsets to
the corresponding treelets in the buffer. Treelets are stored at
4KB page boundaries to improve read access and consist of
a header specifying the number of nodes and points in the
treelet, followed by arrays containing the nodes and particles.

D. Construction of Top-Level Metadata

The final step in the I/O process is the population of a
top-level metadata file on rank 0 (Figure 1d). The top-level
metadata file allows read access to the entire data set as if it
were a single file, transparently supporting spatial and attribute
queries and multiresolution reads on the entire data set. We
gather the value range and bitmap index of each attribute from
each aggregator’s root BAT node to rank 0, which populates
the corresponding leaf nodes in the Aggregation Tree. Each
aggregator’s bitmap indices are remapped from its local range
to the global range for the attribute. Inner node bitmaps are
computed by merging the bitmaps bottom-up from the leaves.

IV. PARALLEL READS

An equally important requirement for a parallel I/O library
is that it provides high-bandwidth reads for fast checkpoint
restart reads. To provide scalable reads on the aggregated data
output in Section III, we implement a two-phase parallel read
pipeline that mirrors our two-phase write. The read pipeline
proceeds as follows: First, all ranks read the Aggregation
Tree metadata, and a subset of ranks is assigned to act as
“read aggregators” (Figure 3a, Section IV-A). Each rank then
determines which leaves it overlaps (Figure 3b) and requests
data over the network from the read aggregators for these
leaves (Figure 3c, Section IV-B). As for parallel writes, we
provide a C API in our parallel I/O library to allow integration
into a variety of simulations.

A. Assignment of Read Aggregators

Each rank reads the Aggregation Tree metadata file to
determine the number of leaf files and the spatial bounds
of each leaf (Figure 3a). Each leaf file is then assigned to a
read aggregator responsible for reading the file.

When reading a data set, we are no longer in control of the
number of leaf files, since this is set when writing the data.
If we have more ranks than files, we assign read aggregators
as done in the write phase, spreading them evenly through
the rank space to distribute work over the nodes. If we have
fewer ranks than files, we assign the files evenly among the
ranks. Providing this flexibility in read aggregator assignment
allows us to support scalable reads of data written at much
larger or smaller core counts than the reading process. The
read aggregator assignments are computed locally on each rank,
producing a map of which files will be read by each rank.

B. Fetching Data from Read Aggregators

Each rank queries the Aggregation Tree to get back a list
of leaf IDs that overlap its bounds (Figure 3b) and sends its
bounds to the read aggregator assigned to each leaf. Upon
receiving the bounds, the read aggregator performs a spatial
query on its leaf files and returns the particles (Figure 3c).

As was the case for writes, we cannot create aggregator
subgroups to transfer the data during reads. Instead, we
implement a client-server data query system using nonblocking
MPI calls. Each read aggregator acts as a data server and
watches for incoming queries to process. Each rank collects
the number of particles that will be returned by each query,
allocates a single buffer to contain them, and then uses
nonblocking receives to write the particles directly into this
buffer. After a rank has received its particles, it calls a
nonblocking barrier and continues the server loop to handle
additional queries. When the barrier is complete, we know that
all ranks have received their data and the read is complete.
If a rank requires data from itself, it performs these queries
locally after exiting the server loop. This query mechanism
can also be leveraged to enable distributed data access for in
situ analytics.

V. VISUALIZATION READS

Visualization reads on our layout take a desired quality
level, bounding box for spatial filtering, and set of attribute
filters. The user also provides a callback that is called for
each point contained in the query. Our data layout directly
accelerates common visualization and analysis tasks involving
spatial and attribute subset queries (Section V-A) and supports
low-latency progressive multiresolution reads for data streaming
(Section V-B). Reads are performed via memory mapping
to leverage the operating system’s caching mechanisms for
frequently accessed regions of the data and for fast access to
page aligned regions of the files (i.e., the treelets).

A. Spatial and Attribute Query Acceleration

Supporting spatial and attribute filtering directly in the data
layout reduces the amount of data that must be processed to

Fig. 4: A prototype web viewer client that progressively streams data from a
server. The server uses our BAT layout to progressively load and send data
back to clients and apply spatial- and attribute-based filtering.

answer a user query, improving response time and reducing
memory use. As our data layout is fundamentally a spatial k-d
tree, spatial queries are accelerated by the spatial hierarchy
stored in the files.

When performing attribute filtering, we test the user’s query
bitmaps against those stored at each node during traversal.
If the bitwise AND of the node and query bitmaps is zero,
the subtree can be ignored. Before returning points to the
user’s callback, we must check that the query contains no false
positives. Although the spatial filtering provided by the k-d
tree is exact, the binned bitmaps only ensure that we do not
discard false negatives, requiring a final false positive check
for attribute queries.

B. Low-Latency Progressive Multiresolution Reads

To support fast multiresolution reads, our layout can be
queried at different quality levels to return a representative
subset of the data (Figure 4). Progressive reads can be
performed by providing the previously queried quality level and
the desired level, in which case only the new particles for the
increment in quality are processed. The quality-level parameter
ranges from zero to one. Zero corresponds to loading nothing,
and one to the entire data set. We remap this parameter using a
log scale to provide a smoother quality progression, since the
number of LOD particles stored doubles each tree level. The
value is then scaled to a maximum treelet depth to traverse
to. When performing progressive reads, the previous quality is
mapped to a previously read minimum treelet depth. The tree
is then traversed to the maximum treelet depth, processing only
points above the minimum depth. We compute a percentage
of the points at the maximum level to process to provide a
smoother LOD transition. Spatial and attribute filtering can
also be performed when using progressive resolution reads.

VI. RESULTS

To evaluate our spatially adaptive parallel I/O approach, we
perform an extensive set of benchmarks on parallel writes and
reads (Section VI-A), using fixed uniform and time-varying
nonuniform particle distributions. We report the bandwidth
achieved compared to standard approaches and study timing
breakdowns of the stages comprising our I/O pipeline. We then
demonstrate the effectiveness of our multiresolution data layout
for analysis tasks and low memory overhead (Section VI-B).

A. Parallel Writes and Reads

Our parallel I/O benchmarks are run on two HPC systems
with different I/O architectures: Stampede2 and Summit.

96 192 384 768 1536 3072 6144 12288 24576
Ranks

1

10

100

Ba
nd

w
id

th
(G

B/
s)

IOR FPP
IOR HDF5
IOR Shared

Target Size 8MB
Target Size 16MB
Target Size 32MB

Target Size 64MB
Target Size 128MB
Target Size 256MB

(a) Stampede2 (peak of 786M particles, 99.9GB at 24k ranks)

84 168 336 672 1344 2688 5376 10752 21504 43008
Ranks

1

10

100

Ba
nd

w
id

th
(G

B/
s)

(b) Summit (peak of 1.37B particles, 174.6GB at 43k ranks)

Fig. 5: Write bandwidth weak scaling on the fixed uniform test data compared
to IOR benchmarks. At scale, our two-phase approach outperforms standard
file per process and single shared file approaches.

96 192 384 768 1536 3072 6144 12288 24576
Ranks

0

20

40

60

80

100
Ti

m
e

(%
)

Data Agg.
Agg. BAT Build
Agg. Write
Agg. Assignment
Metadata Gather
Metadata Write
Other

(a) Stampede2 8MB target size

84 168 336 672 1344 2688 5376
Ranks

0

20

40

60

80

100

Ti
m

e
(%

)

10752
21504

43008

(b) Summit 8MB target size

96 192 384 768 1536 3072 6144 12288 24576
Ranks

0

20

40

60

80

100

Ti
m

e
(%

)

(c) Stampede2 64MB target size

84 168 336 672 1344 2688 5376
Ranks

0

20

40

60

80

100

Ti
m

e
(%

)

10752
21504

43008

(d) Summit 64MB target size

Fig. 6: Timing breakdowns on Stampede2 and Summit. In the scaling regime
of each target size, the relative time spent in each component remains similar.

Stampede2 uses a Lustre file system and we write to the
scratch system, which is capable of 330GB/s peak write
bandwidth, where we use a stripe count of 32 and stripe size of
8MB. Summit uses an IBM Spectrum Scale (GPFS) filesystem
with a peak write speed of 2.5TB/s. Both systems use a fat-
tree topology network, capable of 100Gb/s on Stampede2
and 184Gb/s on Summit. On Stampede2, we use the dual
socket Xeon Skylake (SKX) nodes. Each Summit node has
two POWER9 CPUs and six Volta V100 GPUs.

1) Weak Scaling on Uniform Particle Distributions: To
provide a baseline comparison against standard I/O strategies,
we perform a weak scaling study on a generated uniform
particle distribution. We compare performance against IOR
benchmarks [41] on an equivalent amount of data using IOR’s
file per process, single shared file (MPI I/O), and HDF5
shared file modes. To represent a moderately sized simulation
(e.g., [8]), we generate 32k particles on each rank. Each particle

stores three single precision spatial coordinates and 14 double
precision attributes, corresponding to 4.06MB per rank.

In the benchmarks, we write and read the data 15 times and
plot the geometric mean of bandwidth achieved, as done in
the IO500 [42]. We are interested in the I/O time observed
by a simulation, so we do not perform an explicit fsync. To
avoid the impact of OS caching when reading the data, the
benchmarks read the data on a different rank than that which
wrote it. We also study the effect of the target file size on write
and read performance, varying it from 8MB (file per-process)
to 256MB (≈63 ranks per file).

On both Stampede2 and Summit (Figure 5), we find that our
two-phase I/O approach outperforms standard ones at higher
core-counts. Although file per-process initially performs well
on both systems, the overhead of creating and writing the
large number of files begins to degrade performance at 672
ranks on Summit and 1536 ranks on Stampede2. We observe
similar degradation in our method when using small target
sizes; however, by increasing the target size to perform more
aggregation and write fewer, larger files, these issues can be
avoided. The shared file approaches encounter scaling issues
due to the global communication required during I/O.

The bulk of time in our I/O pipeline is spent writing
the aggregator files to disk, constructing the BATs on each
aggregator, and transferring data to aggregators (Figure 6).
Comparing the 8MB and 64MB target size runs, we find that
the 64MB configuration spends a relatively consistent amount
of time in each component as we scale up, whereas the 8MB
configuration spends a greater percentage of time in writes
at higher core counts where the corresponding scaling trend
flattens off. On Stampede2, we find a larger percentage of time
is spent constructing the BAT layout. The build is compute
and memory bandwidth heavy, and likely benefits from the
larger L3 cache of the POWER9 CPUs on Summit.

On parallel reads, we find that our approach outperforms
file per process and single shared file strategies beyond
moderate core counts on both systems (Figure 7). We observe
similar performance trends as were seen on writes, where the
overhead of many small files in file per process and small
target size configurations impacts performance, whereas the
global communication of single shared file approaches limits
scalability. Our two-phase approach allows selecting the target
size to avoid both issues and achieve high bandwidth reads.
On Summit, we observe the scaling trend for small to medium
size aggregation settings flattening off or decreasing by 43k
cores, although the 256MB aggregation size does not flatten
off as rapidly. Selecting an even larger aggregation size could
help continue scaling read bandwidth past 43k cores.

2) Comparison vs. Prior Work: We use data sets from two
simulations with time-varying nonuniform particle distributions
(Figure 8) to study the effect of our adaptive aggregation
strategy on I/O performance. We compare our approach against
the adjustable uniform grid (AUG) approach of Kumar et
al. [27] implemented within our library to provide a direct
algorithmic comparison. The grid is built based on the target
size to assign ranks to aggregators and discards empty regions

96 192 384 768 1536 3072 6144 12288 24576
Ranks

1

10

100

Ba
nd

w
id

th
(G

B/
s)

IOR FPP
IOR HDF5
IOR Shared

Target Size 8MB
Target Size 16MB
Target Size 32MB

Target Size 64MB
Target Size 128MB
Target Size 256MB

(a) Stampede2 (peak of 786M particles, 99.9GB at 24k ranks)

84 168 336 672 1344 2688 5376 10752 21504 43008
Ranks

1

10

100

Ba
nd

w
id

th
(G

B/
s)

(b) Summit (peak of 1.37B particles, 174.6GB at 43k ranks)

Fig. 7: Read bandwidth weak scaling on the fixed uniform test data, compared
to IOR benchmarks. Our two-phase parallel read strategy outperforms standard
file per process and single shared file reads at scale.

of the grid, as described by Kumar et al. Our adaptive approach
is configured to allow the creation of overfull leaves up to
1.5× the target file size, if the best split to partition the ranks
has a cost of four or higher. The benchmarks are performed
on the SKX nodes on Stampede2.

The Coal Boiler (Figure 8a) is a real-world simulation
performed using Uintah [29], simulating the injection of coal
particles into a boiler. Uintah is a computational framework
that has been used to simulate large-scale nonuniform particle
distributions scaling up to 512k cores of Mira (65% of the
machine) [8]. The domain is partitioned using a 3D grid
and resized to fit the data bounds as they change over time.
At timestep 501, the simulation contains 4.6M particles and
reaches 41.5M at timestep 4501. We perform the I/O benchmark
using 1536 ranks. Each particle saves three floating point
coordinates and seven double precision attributes.

The Dam Break (Figure 8b) is a 3D free surface water
column collapse simulation, containing a fixed number of
particles that move through the domain. The Dam Break was
simulated with ExaMPM, a mini-app developed using the
Exascale Computing Project (ECP) Cabana particle toolkit [11],
that accurately represents the I/O workload of production
applications. The domain is partitioned among the ranks using a
2D grid along x and y (the floor) to achieve better compute load
balance. We use two versions of the Dam Break to compare
scalability, one with 2M particles on 1536 ranks and one with
8M particles on 6144 ranks. Each particle saves three floating
point coordinates and four double precision attributes.

On the Coal Boiler, we find that our adaptive I/O strategy
can improve write performance by up to 2.5× compared to
AUG aggregation (Figure 9a). Parallel reads on the adaptively
aggregated data can be up to 3× faster (Figure 9b). As the
number of particles in the simulation increases, we observe
decreasing performance at lower target sizes, whereas larger

(a) The Coal Boiler, timesteps: 1501, 2501, 3501, 4501

(b) The Cabana Dam Break, timesteps: 0, 1001, 4001.

Fig. 8: The time-varying nonuniform simulation data used in our benchmarks.

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

4

6

8

10

12

14

16

Ba
nd

w
id

th
(G

B/
s)

Target Size 2MB
Target Size 4MB
Target Size 8MB
Target Size 16MB

(a) Write bandwidth.

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

2

4

6

8

10

12

Ba
nd

w
id

th
(G

B/
s)

Target Size 2MB
Target Size 4MB

Target Size 8MB
Target Size 16MB

(b) Read bandwidth.

Fig. 9: Adaptive vs. AUG I/O on the Coal Boiler time series on 1536 ranks.
Dashed lines indicate AUG aggregation [27]. Our adaptive approach is able
to improve write and read performance for imbalanced I/O workloads.

target sizes surpass them. Similar trends are observed for reads.
When comparing timing breakdowns at 8MB (Figure 10), we
find that our adaptive strategy spends less time in the major
steps of our I/O pipeline.

These performance improvements are the result of our
adaptive aggregation ensuring a more balanced I/O workload.
For example, on the 8MB target size runs at timestep 4501,
AUG aggregation outputs 296 files, with an average size of
10.2MB and standard deviation of 13.9MB. Our adaptive
aggregation outputs 327 files, with an average size of 9.2MB
and standard deviation of 8.4MB. The largest file written by
the AUG aggregation was 72.9MB, whereas the largest written
by our adaptive aggregation was 36.6MB.

On the 2M Dam Break, we find that the file per process
mode of both strategies achieves the best (and similar) write
performance (Figure 11a); however, the adaptively written data
provides slightly faster reads (Figure 11c). On the 8M Dam
Break, the 3MB target size using adaptive aggregation achieves
the best write performance overall (Figure 11b), at a 1.5−2×

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

Data Agg.
Agg. BAT Build
Agg. Write
Agg. Assignment
Metadata Gather
Metadata Write

(a) Adaptive aggregation

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

(b) AUG aggregation

Fig. 10: Breakdowns of adaptive vs. AUG I/O on the Coal Boiler, 8MB target
size. The improved load balance achieved by our approach reduces time spent
in the major components of the pipeline, improving write performance.

0 1001 1501 2501 3001 3501 4001
Timestep

1

2

3

4

5

6

Ba
nd

w
id

th
(G

B/
s)

Target Size 0MB
Target Size 1MB

Target Size 3MB
Target Size 6MB

(a) Write bandwidth, 1536 ranks

0 1000 1501 2501 3001 3501 4001
Timestep

5

10

15

Ba
nd

w
id

th
(G

B/
s)

Target Size 0MB
Target Size 1MB

Target Size 3MB
Target Size 6MB

(b) Write bandwidth, 6144 ranks

0 1001 1501 2501 3001 3501 4001
Timestep

2

4

6

8

10

Ba
nd

w
id

th
(G

B/
s)

(c) Read bandwidth, 1536 ranks

0 1000 1501 2501 3001 3501 4001
Timestep

10

20

30

Ba
nd

w
id

th
(G

B/
s)

(d) Read bandwidth, 6144 ranks

Fig. 11: Adaptive vs. AUG aggregation on the Dam Break time series. Dashed
lines indicate AUG aggregation [27]. The performance improvement provided
by adaptive aggregation increases at larger scales for imbalanced simulations.

speed-up over AUG aggregation at the same target size, with
up to 3× speed-ups observed for reads. The performance gap
between adaptive and AUG aggregation grows with the particle
and core count, with the exception of file per process writes.

The Dam Break contains a fixed number of particles, and
an ideal I/O strategy would be expected to achieve constant
write times over the time series. In a timing breakdown of the
3MB run on the 8M Dam Break (Figure 12), we find that the
AUG approach is strongly affected by the simulation’s particle
distribution, whereas our adaptive approach achieves nearly
constant write times.

Based on our experiments, we recommend using smaller
target sizes at lower core or particle counts, corresponding to
roughly 1 : 1 to 4 : 1 aggregation factors. At larger scales, the
target size should be increased to 16 : 1 or higher to avoid
creating a large number of files. If particles are added during
the simulation, as in the Coal Boiler, the target size should be
increased correspondingly to maintain high-performance I/O.

B. Visualization Reads

To examine the suitability of our Binned Attribute Tree
for visualization and analysis, we evaluate its support for low-
latency progressive multiresolution reads and report the memory
overhead required to store it. The evaluation is performed using
a single threaded process on a desktop with an i9–9920X CPU,
128GB of RAM, and a 1TB Samsung 970 NVMe drive.

1) Low-Latency Progressive Multiresolution Reads: We re-
port average read performance on the Coal Boiler (Table I) and
Dam Break (Table II) for a typical progressive multiresolution
use case. Starting from a coarse quality level of 0.1 (~10% of

0 1000 1501 2501 3001 3501 4001
Timestep

0

10

20

30

40

50

60

70
Ti

m
e

(m
s)

Data Agg.
Agg. BAT Build
Agg. Write
Agg. Assignment
Metadata Gather
Metadata Write

(a) Adaptive aggregation

0 1000 1501 2501 3001 3501 4001
Timestep

0

10

20

30

40

50

60

70

Ti
m

e
(m

s)

(b) AUG aggregation

Fig. 12: Breakdowns of adaptive vs. AUG I/O on the 8M Dam Break, 3MB
target size. Our adaptive approach maintains nearly constant I/O times, whereas
the AUG approach is influenced by the changing distribution of the particles.

TABLE I: PROGRESSIVE SINGLE-THREAD READ TIMES AND THROUGHPUT
ON THE COAL BOILER TIMESERIES WRITTEN USING 1536 RANKS.

Target Size Avg. Read (ms) Avg. Throughput (points/ms)

2MB 72.5ms 54968 pts/ms
4MB 69.1ms 55663 pts/ms
8MB 71.8ms 54148 pts/ms

16MB 70.2ms 52501 pts/ms

the data), successively higher quality levels are requested in
increments of 0.1 until the entire data set is loaded. We record
the time spent to traverse the tree and process each requested
point. The BATs are built with eight LOD particles per treelet
inner node and up to 128 particles per treelet leaf.

We achieve similar performance when reading data aggre-
gated at different target sizes on both data sets. On the Coal
Boiler, we find slightly better performance at 4MB, and on the
Dam Break at 3MB. The largest factor determining performance
is the number of points queried. The Coal Boiler sees higher
query times since each query returns far more points than
on the Dam Break. When comparing the data sets in terms
of points per millisecond read throughput, we find similar
throughput on the Coal Boiler and 8M Dam Break. The 2M
Dam Break achieves higher throughput, likely due to its small
size allowing more data to remain cached by the OS.

Our BAT layout does not impose a specific visual represen-
tation on users since the best choice is often domain specific.
To provide an example of the quality progression provided by
our layout, we implement an LOD approach where coarser
representations are displayed with increased particle radii to
fill holes and preserve the overall shape of the object, shown
on the Coal Boiler in Figure 13. By restricting the bitmap
index sizes and avoiding duplication for LOD particles, we
achieve low memory overhead for our layout, requiring just
0.9% additional memory to store.

VII. CONCLUSION

We have presented a spatially adaptive approach for parallel
I/O of multiresolution particle data layouts. Our approach
outperforms standard methods on uniform distributions, and
achieves up to 2.5× faster writes and 3× faster reads on
nonuniform data compared to the prior state of the art [27].
Our low overhead data layout built when writing the data is
directly available for in situ and postprocess visualization tasks,
eliminating the need for data conversion or duplication. Our
code and reproducibility information can be found on GitHub1.

1https://github.com/Twinklebear/libbat

TABLE II: PROGRESSIVE SINGLE-THREAD READ TIMES AND THROUGHPUT
ON THE 2M AND 8M PARTICLE DAM BREAK TIME SERIES.

Target Size Avg. Read (ms) Avg. Throughput (points/ms)

2M total points, written on 1536 ranks

0MB 2.7ms 71441 pts/ms
1MB 2.7ms 70012 pts/ms
3MB 2.6ms 72997 pts/ms

8M total points, written on 6144 ranks

0MB 12.7ms 57659 pts/ms
1MB 12.8ms 57703 pts/ms
3MB 12.4ms 58926 pts/ms

Fig. 13: The visual quality progression on the Coal Boiler. Quality, from left
to right: 0.2, 0.4, 0.8.

A. Limitations

Although our results are compelling, there remain limitations
to address and exciting avenues for future work. Our attribute
filtering approach assumes spatial coherence in the attributes;
if this is not the case, the bitmaps in the tree will be less useful,
degrading query filtering performance. This limitation could be
addressed by adopting more advanced binning schemes [43]
or additional hierarchies on these attributes. Moreover, the
effectiveness of limiting bitmaps to just 32 bits warrants further
evaluation. Our approach is also somewhat limited in how much
it can rebalance the I/O load, since we do not divide a single
rank’s data into separate leaves. It would also be valuable to
support automatically selecting the target size based on the
particle count and size using the results of our evaluation.
Finally, our BAT layout does not make use of compression or
quantization, which would reduce memory use further.

Allowing users to build their own data layout would ease
adoption of our method for simulation-analysis pipelines that
already use a specific layout. The layout would also be available
in situ, easing the process of bringing postprocess analytics
reliant on a specific data layout in situ. The output structure size
is likely related to the input data size, allowing our approach
to still provide effective load balancing.

ACKNOWLEDGMENTS

This work was funded in part by NSF OAC awards 1842042,
1941085, NSF CMMI awards 1629660, LLNL LDRD project
SI-20-001, DoE award DE-FE0031880, and the Intel Graphics
and Visualization Institute of XeLLENCE. This material is
based in part upon work supported by the DoE NNSA under
award DE-NA0002375. This research was supported in part by
the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the DoE and the NNSA. This work was performed in
part under the auspices of the DoE by LLNL under contract
DE-AC52-07NA27344, and UT-Battelle, LLC under contract
DE-AC05-00OR22725. The authors thank the Texas Advanced
Computing Center for access to Stampede2. This research used
resources of the Oak Ridge Leadership Computing Facility,
which is a DoE User Facility.

REFERENCES

[1] “HDF5 Home Page,” http://www.hdfgroup.org/HDF5/.
[2] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-

aware data movement and staging for I/O acceleration on Blue Gene/P
supercomputing systems,” in Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, 2011.

[3] Jianwei Li, Wei-keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A High-Performance Scientific I/O Interface,” in SC ’03: Proceedings of
the 2003 ACM/IEEE Conference on Supercomputing, 2003.

[4] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, Metadata
Rich IO Methods for Portable High Performance IO,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium On, 2009.

[5] S. Kumar, J. Edwards, P.-T. Bremer, A. Knoll, C. Christensen, V. Vish-
wanath, P. Carns, J. A. Schmidt, and V. Pascucci, “Efficient I/O and
storage of adaptive-resolution data,” in SC14: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014.

[6] S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V. Pascucci,
R. Ross, J. Chen, H. Kolla, and R. Grout, “PIDX: Efficient parallel
I/O for multi-resolution multi-dimensional scientific datasets,” in Cluster
Computing (CLUSTER), 2011 IEEE International Conference On, 2011.

[7] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, 1995.

[8] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey,
Q. Meng, J. Schmidt, and C. Wight, “Extending the Uintah Framework
through the Petascale Modeling of Detonation in Arrays of High
Explosive Devices,” SIAM Journal on Scientific Computing, 2016.

[9] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E.
Holz, and P. M. Sutter, “Dark Sky Simulations: Early Data Release,”
arXiv:1407.2600, 2014.

[10] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “HACC: Simulating sky
surveys on state-of-the-art supercomputing architectures,” New Astronomy,
2016.

[11] S. Slattery, C. Junghans, D. Lebrun-Grandie, R. Halver, G. Chen,
S. Reeve, A. Scheinberg, C. Smith, and R. Bird, “ECP-copa/Cabana:
Cabana Version 0.2.0,” Mar. 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.2591488

[12] W. Ge, R. Sankaran, and J. H. Chen, “Development of a CPU/GPU
portable software library for Lagrangian-Eulerian simulations of liquid
sprays,” International Journal of Multiphase Flow, 2020.

[13] D. Z. Zhang, Q. Zou, W. B. VanderHeyden, and X. Ma, “Material point
method applied to multiphase flows,” Journal of Computational Physics,
2008.

[14] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in
ROMIO,” in Seventh Symposium on the Frontiers of Massively Parallel
Computation, 1999.

[15] J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel
I/O via a two-phase run-time access strategy,” SIGARCH Comput. Archit.
News, 1993.

[16] M. Howison, A. Adelmann, E. W. Bethel, A. Gsell, B. Oswald, and others,
“H5hut: A high-performance I/O library for particle-based simulations,”
in Cluster Computing Workshops and Posters, 2010 IEEE International
Conference On, 2010.

[17] S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, V. Royter-
shteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin et al., “Parallel
I/O, analysis, and visualization of a trillion particle simulation,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2012
International Conference For, 2012.

[18] S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning
HDF5 subfiling performance on parallel file systems,” in Cray User
Group, 2017.

[19] M. Hopf and T. Ertl, “Hierarchical splatting of scattered data,” in
Proceedings of the 14th IEEE Visualization 2003 (VIS’03), 2003.

[20] R. Fraedrich, J. Schneider, and R. Westermann, “Exploring the Millen-
nium Run–Scalable Rendering of Large-Scale Cosmological Datasets,”
IEEE Transactions on Visualization and Computer Graphics, 2009.

[21] K. Schatz, C. Muller, M. Krone, J. Schneider, G. Reina, and T. Ertl,
“Interactive Visual Exploration of a Trillion Particles,” in LDAV, 2016.

[22] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and
K. Heitmann, “In-situ Sampling of a Large-Scale Particle Simulation
for Interactive Visualization and Analysis,” Computer Graphics Forum,
2011.

[23] K. Wu, W. Koegler, J. Chen, and A. Shoshani, “Using bitmap index
for interactive exploration of large datasets,” in Scientific and Statistical
Database Management, 2003. 15th International Conference On, 2003.

[24] R. R. Sinha and M. Winslett, “Multi-resolution bitmap indexes for
scientific data,” ACM Transactions on Database Systems, 2007.

[25] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and
W.-M. Zhang, “FastBit: Interactively searching massive data,” Journal of
Physics: Conference Series, 2009.

[26] V. Pascucci and R. J. Frank, “Global static indexing for real-time
exploration of very large regular grids,” in Supercomputing, ACM/IEEE
2001 Conference, 2001.

[27] S. Kumar, S. Petruzza, W. Usher, and V. Pascucci, “Spatially-aware
Parallel I/O for Particle Data,” in Proceedings of the 48th International
Conference on Parallel Processing - ICPP 2019, 2019.

[28] S. Byna, A. Uselton, and D. Knaak, “Trillion Particles, 120,000 cores,
and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper,” 2013.

[29] Q. Meng, A. Humphrey, and M. Berzins, “The Uintah framework: A
unified heterogeneous task scheduling and runtime system,” in High
Performance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion:, 2012.

[30] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, 1975.

[31] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Liu, P. Sadowski,
E. Racah, S. Byna, C. Tull, W. Bhimji, Prabhat, and P. Dubey, “PANDA:
Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures,”
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2016.

[32] M. M. A. Patwary, P. Dubey, S. Byna, N. R. Satish, N. Sundaram,
Z. Lukić, V. Roytershteyn, M. J. Anderson, Y. Yao, and Prabhat, “BD-
CATS: Big Data Clustering at Trillion Particle Scale,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis - SC’15, 2015.

[33] J. Chou, K. Wu, O. Rubel, M. Howison, J. Qiang, B. Austin, E. W.
Bethel, R. D. Ryne, and A. Shoshani, “Parallel index and query for
large scale data analysis,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference For, 2011.

[34] J. Kim, H. Abbasi, L. Chacon, C. Docan, S. Klasky, Q. Liu, N. Podhorszki,
A. Shoshani, and K. Wu, “Parallel in situ indexing for data-intensive
computing,” in Large Data Analysis and Visualization (LDAV), 2011.

[35] Y. Su, Y. Wang, and G. Agrawal, “In-Situ Bitmaps Generation and
Efficient Data Analysis based on Bitmaps,” 2015.

[36] J. Chou, K. Wu, and Prabhat, “FastQuery: A Parallel Indexing System
for Scientific Data,” in 2011 IEEE International Conference on Cluster
Computing, 2011.

[37] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Pre-
DatA–Preparatory Data Analytics on Peta-scale Machines,” in IEEE
International Symposium on Parallel & Distributed Processing (IPDPS),
2010.

[38] Lawrence Livermore National Laboratory, “Silo: A Mesh and
Field I/O Library and Scientific Database.” [Online]. Available:
https://wci.llnl.gov/simulation/computer-codes/silo

[39] S. Kumar, D. Hoang, S. Petruzza, J. Edwards, and V. Pascucci, “Reducing
Network Congestion and Synchronization Overhead During Aggregation
of Hierarchical Data,” in 2017 IEEE 24th International Conference on
High Performance Computing (HiPC), 2017.

[40] T. Karras, “Maximizing Parallelism in the Construction of BVHs,
Octrees, and k-d Trees,” in Proceedings of the Fourth ACM SIG-
GRAPH/Eurographics Conference on High-Performance Graphics, 2012.

[41] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark,” in SC ’08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, Nov 2008.

[42] “Virtual Institute for I/O.” [Online]. Available: https://www.vi4io.org
[43] K. Wu, K. Stockinger, and A. Shoshani, “Breaking the Curse of

Cardinality on Bitmap Indexes,” in Scientific and Statistical Database
Management, B. Ludäscher and N. Mamoulis, Eds., 2008.

