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Abstract 

Cancer genomic, transcriptomic, and proteomic profiling has generated extensive data that necessitate the development of tools for 
its analysis and dissemination. We developed UALCAN to provide a portal for easy exploring, analyzing, and visualizing these 
data, allowing users to integrate the data to better understand the gene, proteins, and pathways perturbed in cancer and make 
discoveries. UALCAN web portal enables analyzing and delivering cancer transcriptome, proteomics, and patient survival data to 

the cancer research community. With data obtained from The Cancer Genome Atlas (TCGA) project, UALCAN has enabled users 
to evaluate protein-coding gene expression and its impact on patient survival across 33 types of cancers. The web portal has been 

used extensively since its release and received immense popularity, underlined by its usage from cancer researchers in more than 

100 countries. The present manuscript highlights the task we have undertaken and updates that we have made to UALCAN since 
its release in 2017. Extensive user feedback motivated us to expand the resource by including data on a) microRNAs (miRNAs), 
long non-coding RNAs (lncRNAs), and promoter DNA methylation from TCGA and b) mass spectrometry-based proteomics 
from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). UALCAN provides easy access to pre-computed, tumor 
subgroup-based gene/protein expression, promoter DNA methylation status, and Kaplan-Meier survival analyses. It also provides new 

visualization features to comprehend and integrate observations and aids in generating hypotheses for testing. UALCAN is accessible 
at http://ualcan.path.uab.edu 
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Introduction 

Cancer is a complex and heterogeneous disease, rarely detected at its
initial stages [1] . Current methods rely on biomarker panels that contain
several genes rather than a single specific biomarker to quickly and accurately
detect cancers [2–4] . The advent of high-throughput technologies, such
as whole/targeted exome sequencing, whole-genome sequencing, large-
scale RNA sequencing, and chromatin immunoprecipitation followed
by sequencing (ChIP-Seq) and mass spectrometry-based proteomics, has
accelerated cancer research and has resulted in a large volume of publicly
available data. Clinicians and cancer researchers involved in detecting,
discovering, and validating cancer biomarkers and treatments, find it difficult
to access, process, integrate, and interpret high-throughput data. Hence,
easy-to-use, web-based/standalone tools enable cancer researchers/clinicians
to access omic data and perform multilevel analyses. With this objective,
we developed UALCAN [5] . UALCAN enables researchers to access Level
3 RNA-seq data from The Cancer Genome Atlas (TCGA) and perform gene
expression and survival analysis on about 20,500 protein-coding genes in 33
different tumor types. Since its publication, UALCAN has become a highly
used web portal for cancer researchers around the world. Since its release
in 2017, the web portal has been accessed more than 750,000 times from
more than 100 countries. We have recently performed several additional
data analyses and data integration and upgraded the UALCAN web portal.
We have expanded the scope of UALCAN by including RNA-seq data
analysis related to non-coding genes and adding new analysis features such
as gene correlation, pan-cancer analysis, and promoter methylation analysis.
The current manuscript highlights the additions and upgrades that we have
incorporated into the latest version of UALCAN. Its web portal is available
at http://ualcan.path.uab.edu . 

Methods 

Collection of non-coding gene expression data 

Level 3 miRNA-seq data were downloaded from TCGA using TCGA-
assembler pipeline [6] . DownloadmiRNASeqData() was utilized to download
gene expression values (reads per million, RPM) for 1871 pre-miRNAs in 32
cancer types. Normal tissue and primary tumor RPM values were downloaded
separately. RPM values of primary tumor samples were categorized based on
the demography of patients and clinicopathological features such as race, age,
gender, tumor grade, tumor stage, and molecular subtype. 

TCGA gene expression values for long non-coding RNAs were
downloaded from the Genome Data Commons (GDC) portal
( https://gdc.cancer.gov/ ), which facilitates downloading, for each sample,
a gene expression quantification file generated via “HTSeq-FPKM”
workflow ( https://docs.gdc.cancer.gov/Data/Bioinformatics _ Pipelines/
Expression _ mRNA _ Pipeline/ ). Each file contains an Ensembl gene id and
a Fragments Per Kilobase of transcript per Million mapped reads (FPKM)
value for all genes, including 14,076 lncRNAs. 

Collection of DNA methylation data 

TCGA-assembler pipeline was used to download TCGA
DNA methylation data generated using the Illumina Infinium
HumanMethylation450 BeadChip. At first, the Download
MethylationData() function was used to download Infinium
HumanMethylation450 BeadChip data for primary tumors and matched
normal samples of each cancer type as tab-separated text files. Downloaded
data were further processed to calculate an average methylation (beta) value
for each gene, considering CpG sites located in the promoter region of
the gene (1500 bases upstream and 200 bases downstream of transcription
tart sites [TSS]) via the CalculateSingleValueMethylationData() in TCGA- 
ssembler. 

ollection of proteomic data 

High-throughput mass spectrometry data related to breast cancer, colon 
ancer, ovarian cancer, clear cell renal carcinoma, uterine corpus endometrial 
arcinoma, lung adenocarcinoma, and pediatric brain cancer were obtained 
rom the Clinical Proteomic Tumor Analysis Consortium (CPTAC), which 
rovides expression data for approximately 10,000 proteins. Integration and 
nalysis of these data have been reported [ 7 , 8 ]. In brief, protein expression
alues downloaded from the CPTAC data portal were log2 normalized in 
ach sample. Then a Z-value for each sample for each protein was calculated
s standard deviations from the median across samples. 

ollection of ChIP-seq data 

We have now acquired and incorporated into UALCAN, ChIP- 
equencing data related to a) activating or repressing histone modifications 
H3K27me3, H3K27ac, H3K9ac, and H3K9me3) in breast cancer cell lines 
rom the Gene Expression Omnibus (GEO) [GSE85158], b) transcription 
actors (AR, ERG, EZH2, SUZ12, and BRD4), and activating or repressing 
istone modifications (H3K27me3 and H3K27ac) in prostate cancer 
ell lines from GEO [GSE73616, GSE83653, GSE55062, GSE135623, 
SE83860, GSE39459, GSE137207, GSE114737] [9–16] . 

atabase integration of non-coding RNA targets 

For facilitating integrated analysis of miRNAs or lncRNAs, several non- 
oding RNA target databases were downloaded and embedded in the 
ALCAN server. This effort includes miRNA target databases such as 
argetScan, comprised of target predictions based on conserved sites in 
iRNA seed regions [17] ; microRNA.org, in which target predictions are 

ased on a miRanda algorithm [18] ; and miRDB, which includes miRNA 

argets predicted by the MirTarget tool [19] . LncRNA target databases 
uch as LncREG, which provides validated lncRNA-gene associations from 

ublished research [20] ; and LncRNA2Target, a database of genes altered on 
ncRNA knockdown or overexpression [21] . Data were downloaded as tab- 
eparated files. 

ata analyses 

nalyses of gene expression/promoter methylation 
miRNA and lncRNA expression values for each tumor subgroup or 

ormal samples were displayed as box-whisker plots, similar to protein-coding 
ene expression values presented previously. For each tumor subgroup, the 
ox-whisker plots present interquartile ranges (IQRs), including minimum, 
st quartile, median, 3rd quartile, and maximum values. In terms of statistics,
e used the descriptive PERL module to calculate IQR values after filtering 
utliers. Welch’s T-test estimated the significance of differences in expression 
evels between normal and primary tumors or tumor subgroups based 
n clinicopathological features. We followed similar methods to display 
romoter DNA methylation status and measure the significance of hypo- 
hyper-methylation status. 

Top 100 over-/under-expressed lncRNAs in specific cancer were selected, 
onsidering lncRNAs a) with median expression value (i.e FPKM) greater 
han 1 in either tumor samples or normal samples, b) with higher ratio
etween mean tumor expression value and mean normal expression value 
nd c) statistical significance of 0.001 or less between normal and tumor 
ene expression values. Same procedure was followed to identify top 50 over- 
under-expressed miRNAs. 

http://ualcan.path.uab.edu
https://gdc.cancer.gov/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
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Fig. 1. LncRNA expression profile in prostate adenocarcinoma. (A-D) Graphs showing expression level analysis of PCAT6 using UALCAN web-portal in 
normal prostate, all primary tumors and subgroups based on patient race (B), Gleason score(C) and molecular subtypes (D). (E) Pan cancer gene expression 
profile of PCAT6. Red boxplot depicts expression level in primary tumors, while blue boxplot indicate expression in normal samples. 
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Survival analyses 
Kaplan-Meier analyses are a prominent feature of UALCAN. We

performed additional univariate and multivariate survival analyses to aid
users in evaluating the effect of non-coding RNA expression levels on the
overall survival of patients. As mentioned in our previous manuscript [5] ,
from TCGA patient survival data, we considered ‘day_to_last_follow_up’ if
the patient was alive and ‘days_to_death’ if the patient was dead. Primary
tumor samples were divided into a ‘High expression’ group (i.e., samples with
gene expression values equal to or more than the 3rd quartile value) and a
‘Low/Medium expression’ group (i.e., samples with gene expression values
less than the 3rd quartile). 

We conducted survival analyses and generated Kaplan-Meier plots using
the R packages ‘survival’ and ‘survminer’. P-values from log rank tests
ere derived to determine the significance of survival analyses. Multivariate
urvival analyses were also performed to assess the combinatorial effect of
on-coding RNA expression and race/gender on patient survival. 

an-cancer analysis 
To facilitate analysis of gene expression patterns across TCGA cancer data,

e provided a “Pan Cancer View” since expression values (TPM or FPKM)
or a gene could vary substantially between cancer types. These were log-
ormalized as log2(TPM + 1) or as log2(FPKM + 1), and interquartile ranges
IQRs) were derived for each cancer type and projected as box-whisker plots.
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Fig. 2. miRNA expression profile in Lung adenocarcinoma. (A) Heatmap generated using UALCAN showing top miRNAs under expressed in lung 
adenocarcinoma [LUAD]. (B-C) Boxplot showing expression level of hsa-miR-144 in normal, primary tumors and tumor subgroups based on patient’s 
smoking status. (D) Predicted targets of hsa-miR-144 and their expression status is lung adenocarcinoma. 
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Fig. 3. Promoter methylation of DNA information from TCGA Illumina bead chip data in UALCAN. (A) UALCAN generated heatmap showing top 25 
genes with hyper-methylated promoter DNA in breast invasive carcinoma. (B, C) Boxplots showing inverse relation between promoter methylation status and 
gene expression profile of ENPP2 in TCGA breast invasive carcinoma [BRCA]. (D-G) Boxplots showing promoter methylation level and mRNA expression 
level of ENPP2 in different stages of breast cancer (D,E) and different subclasses of breast cancer (F, G). 
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Fig. 4. Gene expression correlation analysis of FOXM1 in Breast invasive carcinoma [BRCA]. (A) Gene query result page in UALCAN directs user to gene 
correlation analysis page. (B, C) UALCAN generated list of positively [Pearson Correlation Coefficient > 0.3] and negatively [Pearson Correlation Coefficient 
< -0.3] correlated genes of FOXM1 in BRCA. Scatter plots are provided to visualize correlation for each gene pair. 
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Gene correlation analyses 
Correlation analysis of genes using RNA expression values helps

researchers to identify interacting or co-expressing genes. Thus, we performed
Pearson correlation analysis using expression values of all protein-coding
genes. We carried out analyses using an in-house PERL script that utilizes
the “Statistics::Basic” module. Gene pairs showing Pearson correlation
coefficients of 0.3 or above were considered as positive correlations, and those
showing Pearson correlation coefficients of -0.3 or below were considered as
negative correlations. 
hIP-seq data analysis 
Raw sequence read files (fastq) were downloaded using the fastq- 

ump tool of the NCBI SRA toolkit ( https://trace.ncbi.nlm.nih.gov/ 
races/sra/sra.cgi?view=software ). Downloaded data were cleaned using Trim 

alore [ https://www.bioinformatics.babraham.ac.uk/projects/trim _ galore/ ]. 
rimmed reads were mapped to the human reference genome (hg38) using 
he Burrows-Wheeler Aligner [bwa mem] [22] . Mapped reads were sorted, 
nd duplicate reads were marked using Picard tools [ https://broadinstitute. 
ithub.io/picard/ ]. For visualization purposes, a BigWig file for each BAM 

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://broadinstitute.github.io/picard/
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Fig. 5. Total protein and phosphoprotein expression pattern of MUC1 in lung adenocarcinoma. (A) Boxplot generated using UALCAN showing total protein 
expression of MUC1 in lung adenocarcinoma. (B-D) Boxplots depicting expression level of MUC1 phosphoproteins in lung adenocarcinoma. (E) Pan cancer 
view of MUC1 total protein expression in breast, colon, ovarian, renal and endometrial cancer. 
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file was generated using the bamCoverage module of deepTools [23] . Peak
calling was performed with MACS2 [24] . 

To facilitate interactive visualization of the results of ChIP-seq data
analysis, “igv.js” JavaScript, developed by the Integrative Genome Viewer
(IGV) team, was embedded into UALCAN [ https://github.com/igvteam/igv.
js/ ]. 

Results 

Incorporation of new data and analysis features in UALCAN 

The UALCAN web portal is hosted on a powerful server with a Linux
operating system (CentOS) and an Apache web server. The front end of
he web portal was designed using PERL CGI, CSS, and JavaScripts from
ighcharts and IGV. 

ong non-coding RNA expression and patient survival analysis 
Cancer genome transcribes many non-coding RNAs apart from protein 

oding genes. These include long non-coding RNAs. The UALCAN analysis
age allows users to enter one or more lncRNAs [as official gene symbol(s)]
nd select one of 33 TCGA cancers. On submission, the user is directed to i)
 web page showing the expression pattern of the lncRNA (as a box-whisker
lot) in normal and primary tumor samples [ Fig. 1 A], in tumor subgroups
ased on race, molecular subtypes, and by other clinicopathologic features
 Fig. 1 B-D]; ii) a web page presenting Kaplan-Meier plots depicting the effect
f the lncRNA on overall survival of patients [Supplementary Fig. 1]; or iii)
 web page providing a pan-cancer view, i.e., the expression pattern of the

https://github.com/igvteam/igv.js/
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lncRNA across TCGA cancers [ Fig. 1 E]. In addition, users can obtain a list
of target genes and their mRNA expression pattern by clicking the “Target
genes” button at the bottom of the box-whisker plot on the gene expression
page. 

The analysis page also allows the user to obtain a list of the top 100 over-
/under-expressed genes for a specific tissue-based cancer type or a specific
molecular subtype of cancer. The gene list can be visualized and downloaded
as a heatmap. 

MicroRNA expression and patient survival analysis using TCGA transcriptome 
sequencing data 

In the updated UALCAN, we have also integrated the small non-coding
RNAs called microRNAs in UALCAN. The UALCAN analysis page allows
users to i) retrieve a list of the top 50 over-/under-expressed miRNAs for
a specific cancer type [ Fig. 2 A] and ii) query an miRNA of interest to
obtain its expression in normal tissue, primary tumors, and tumor subgroups
[ Fig. 2 B-C], as well as view expression-based overall survival plots and a list
of predicted target genes [ Fig. 2 D]. 

Promoter DNA methylation analysis 
Epigenetic modifications are involved in the regulation of gene expression

and controlling many cellular process in both normal and cancer cells.
To evaluate the potential role of DNA promoter methylation and histone
modifications in regulating the expression of cancer genes, we incorporated
DNA promoter methylation analysis into UALCAN ( Fig. 3 A). The protein-
coding gene expression page includes a link to a web page providing promoter
DNA methylation levels in primary tumor samples and their subgroups
[ Fig. 3 B, D, F]. This feature allows cancer researchers to assess the direct
influence of promoter DNA methylation on protein-coding gene expression
in tumor samples [ Fig. 3 C, E, G]. The methylation page also provides a list
of the top 100 hyper-/hypo-methylated genes for each cancer type. 

ChIP-seq data analysis 
We have now included selected public ChIP-seq datasets, integrated

into UALCAN, facilitating analysis of activating (H3K9Ac/H3K27Ac) or
repressing (H3K9me3/H3K27me3) histone modifications along upstream or
gene body regions for breast cancer and prostate cancer. In addition, ChIP-
seq data for transcription factors and polycomb group complex members
(ERG, EZH2, AR, and SUZ12) are included for prostate cancer cell lines.
ChIP-seq results are displayed as interactive genome visualization for easy
interpretation [Supplementary Fig. 2]. We are presently extending this feature
to other cancers. 

Identification of cancer-specific correlated genes 
Most genes do not function in isolation but have networks that facilitate

gene function. There are master regulatory genes and the expression of
some genes regulates numerous other genes. Thus, to identify associated
gene expression, we have now incorporated correlated gene expressions.
The expression-based gene correlations are useful in constructing and
understanding gene interaction/regulatory networks. With this in mind, we
provide a list of positively and negatively correlated genes for each query gene
in each cancer type [ Fig. 4 A]. Scatter plots for each gene pair in cancers can
be visualized and downloaded [ Fig. 4 B, C]. 

We have initiated the incorporation of protein expression and
post-translational modification analyses using CPTAC data ( https:
//cptac- data- portal.georgetown.edu/ ). With the integration of high-
throughput mass spectrometry data, UALCAN facilitates the analysis of
the expression of total protein [ Fig. 5 A] and phosphorylated proteins
[ Fig. 5 B-D] for seven cancer types. The pan-cancer view also helps visualize
relative expression levels of proteins across breast, colon, ovarian, renal, and
uterine cancers [ Fig. 5 E]. 
iscussion 

The recent advances in DNA and RNA sequencing technology and 
dvanced proteomic technology have enhanced cancer research and facilitated 
atient treatment. These technologies also produce extensive data that 
an potentially be utilized to perform various analyses and identify 
ew biomarkers and therapeutic targets. However, big data acquisition, 
anagement, curation, analysis, and sharing remain a bottle-neck. Cancer 

iologists and researchers need to identify biomarkers and cancer-related 
iological associations, discover therapeutic targets, and re-purpose existing 
rugs. To provide easy access and analysis to researchers, we developed the 
ALCAN portal [5] , which researchers worldwide have extensively used since 

elease of the first version in 2017. Since then, we have embarked on adding
ew data analyses and datasets and upgraded the portal to enhance its usage
nd user experience. We have included non-coding gene expression and DNA 

ethylation from TCGA, protein expression data from CPTAC, and ChIP- 
eq data from NCBI GEO. New features, including gene correlation analyses, 
an-cancer views, and target gene listings for non-coding RNAs, have elevated 
he utility of this web portal. 

The updates and upgrades that we have made in UALCAN have enhanced 
he portal’s functionality and now allow researchers to cross-compare the 
ata for protein coding gene expression with both non-coding RNAs and 
roteomic changes. Furthermore, the inclusion of epigenetic data, including 
romoter methylation, enables researchers to identify potential regulators 
f gene expression by these mechanisms. The inclusion of microRNA 

nd lncRNA expression and survival analysis adds another dimension to 
iomarker discovery and analysis of gene expression regulation. 

Moving forward, we intend to obtain, analyze, and incorporate additional 
ublicly available transcriptome sequencing datasets so that they can be used 
s validation datasets for the observations made with TCGA transcriptome 
equencing data. We will also incorporate additional proteomic data for the 
nalysis. We will incorporate multiple relevant ChIP-Seq data and the dot-pot 
eature to help identify the expression of outlier genes. We will also continue
o incorporate the suggestions from end-users as and when they are applicable 
nd feasible. 
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